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This  p a p e r  p r e s e n t s  a l i n e a r - t i m e  algorithm for  the  
spec i a l  c a s e  of t h e  d i s jo in t  s e t  u n i o n  p r o b l e m  in wh ich  t he  
s t r u c t u r e  of t h e  u n i o n s  (def ined  by  a "un i on  t r e e " )  is 
known  in  advanc e .  The a l g o r i t h m  e x e c u t e s  a n  i n t e r m i x e d  
sequence of rn  u n i o n  a n d  find o p e r a t i o n s  on n e l e m e n t s  in  
0 ( r n + n )  t i m e  a n d  0 ( n )  space .  This  is  a s l igh t  b u t  t h e o r e t -  
ica l ly  s ign i f i can t  i m p r o v e m e n t  over  t h e  f a s t e s t  k n o w n  
a l g o r i t h m  for  t he  g e n e r a l  p r o b l e m ,  wh i ch  r u n s  in  
O(ma(m+n, n)+n) t i m e  a n d  0 ( n )  space ,  w h e r e  a is a 
f u n c t i o n a l  i n v e r s e  of A c k e r m a n n ' s  func t ion .  U s e d  .as a 
s u b r o u t i n e ,  t h e  a l g o r i t h m  g ives  s imi l a r  improvemer~ t s  in 
t h e  e f f i c i ency  of a l g o r i t h m s  for solving a n u m b e r  of o t h e r  
p r o b l e m s ,  inc lud ing  t w o - p r o c e s s o r  s chedu l ing ,  t h e  off-line 
ra in  p r o b l e m ,  m a t c h i n g  on convex  g r a p h s ,  f inding n e a r e s t  
c o m m o n  a n c e s t o r s  off-line, t e s t i n g  a flow g r a p h  for r e d u -  
cibility, a n d  f inding two d is jo in t  d i r e c t e d  s p a n n i n g  t r e e s .  
The a l g o r i t h m  o b t a i n s  i ts  e f f ic iency  by  c o m b i n i n g  a f a s t  
a l g o r i t h m  for t h e  g e n e r a l  p r o b l e m  wi th  t ab le  look-up on  
sma l l  s e t s ,  a n d  r e q u i r e s  a r a n d o m  a c c e s s  m a c h i n e  for  i t s  
i m p l e m e n t a t i o n .  The a l g o r i t h m  e x t e n d s  to t h e  c a s e  in 
wh ich  s i ng l e -node  add i t i ons  to t he  u n i o n  t r e e  a re  allowed. 
The e x t e n d e d  a l g o r i t h m  is u se fu l  in f inding m a x i m u m  car -  
d ina l i ty  m a t c h i n g s  on n o n b i p a r t i t e  g r a p h s .  
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F o u n d a t i o n ,  Grant MCS78-18909. 
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1. INTRODUCTION 
The d is jo in t  se t  u n i o n  p r o b l e m  o c c u r s  f r e q u e n t l y  in  

t h e  d e s i g n  of c o m b i n a t o r i a l  a l g o r i t h m s  [AHU 1974, pp. 
124-145, HS]. We shal l  f o r m u l a t e  th i s  p r o b l e m  as  follows. 
We wish  to c a r r y  o u t  a n  i n t e r m i x e d  s e q u e n c e  of t h r e e  
k i n d s  of ope ra t i ons ,  wh ich  a c c e s s  a n d  mod i fy  a co l l ec t ion  
of d is jo in t  s e t s :  

unite (x,y ): 

r n a k e s e f  (x):  C r e a t e  a new s i n g l e t o n  s e t  Ix] whose  n a m e  is 
.z .  This o p e r a t i o n  is only al lowed if z is in no  
ex i s t i ng  set .  
R e t u r n  t he  n a m e  of t he  s e t  c o n t a i n i n g  ele- 
m e n t  z. 
Create a new set that is the union of the sets 
containing x and y. The name of the new set 
is the name of the old set containing x. This 
operation destroys the old sets containing z 
and y. 

The o p e r a t i o n s  m u s t  be  c a r r i e d  ou t  on-line; t h a t  is , e a c h  
one must be completed before the next one is known. We 
shall use n to denote the total number of elements (that 
is, the number of ~%alceset operations) and m to denote 
the total number of unites and finds. 

This problem has many applications and has been 
widely i n v e s t i g a t e d  (see  [T1975]; a lso [DR], [KS], 
[T1979b]).  The f a s t e s t  known  a l g o r i t h m  for t h e  d is jo in t  
s e t  u n i o n  p r o b l e m  r u n s  in O(ma(m+n, n)+n) t i m e  an d  
0 ( n )  space ,  whe re  a is a f u n c t i o n a l  i nve r se  of 
A c k e r m a n n ' s  f u n c t i o n  [T1975, TV1982]. The re  a r e  in f ac t  
a n u m b e r  of s u c h  f a s t  a l g o r i t h m s ,  all m i n o r  v a r i a n t s  of 
e a c h  o t h e r  [TV198Z]. We call t h e s e  a l g o r i t h m s  a-algo- 
r / 2 h m s .  The a - a l g o r i t h m s  r u n  on  a p o i n t e r  m a c h i n e  
[T1979b] and,  as  one  would expec t ,  p e r f o r m  qui te  well in 
p r a c t i c e .  

N e v e r t h e l e s s  it is a n  in t e l ' e s t ing  t h e o r e t i c a l  p r o b l e m  
to d e t e r m i n e  w h e t h e r  t h e r e  is a l i n e a r - t i m e  a l g o r i t h m  for 
d i s jo in t  s e t  un ion .  U n d e r  c e r t a i n  t e c h n i c a l  r e s t r i c t i o n s ,  
Q(rna(m+n, n ) + n )  is a lower b o u n d  on  t h e  w o r s t - c a s e  
r u n n i n g  t ime  of a n y  s e t  u n i o n  a l g o r i t h m  on  a p o i n t e r  
m a c h i n e  [T1979b]. Thus  to ob t a in  a l i n e a r - t i m e  a l g o r i t h m  

© 1983  A C M  0 - 8 9 7 9 1 - 0 9 9 - 0 / 8 3 / 0 0 4 / 0 2 4 6  $ 0 0 . 7 5  

246 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800061.808753&domain=pdf&date_stamp=1983-12-01


we must either confine our attention to a special case of 
set union or take advantage of the more powerful capabili- 
ties of random-access machines [AHU1974, pp. 12-19]. 
The result of this paper combines both of these ideas. We 
give an algorithm that runs in linear time on a random- 
access machine for the special case of set union in which 
t h e  s t r u c t u r e  of the  unions,  as  defined by a "union t ree" ,  
is known in advance.  This case  occu r s  in m a n y  applica- 
t.ions, for each  of which our  r e su l t  gives an  improved  algo- 
r i t hm.  Although the  r e su l t s  m a y  a p p e a r  to be of only 
theo re t i c  in te res t ,  e x p e r i m e n t s  with an  i m p l e m e n t a t i o n  of 
a r e s t r i c t e d  case  of our  a lgo r i thm indicate  t h a t  in prac-  
t ice it is compet i t ive  with a -a lgo r i thms  and of ten  out- 
p e r f o r m s  them.  

We solve the  following prob lem,  called static tree set 
uvtion. We a re  given a ( rooted)  t r ee  T of n nodes,  ini- 
tially every node v of the t r ee  is in a s ingle ton se t  ~v 
named  v.  We denote  the p a r e n t  of node v in the  t r ee  by 
p ( v ) ;  if v is the root  of the t ree,  p(v )  has  the  special  
value null. We wish to p e r f o r m  on-line an in t e rmixed  
s e q u e n c e  of f ind and link opera t ions  on  the  sets ,  where  
f i n d  is defined as before  and linIc(v) is equivalent  to 
unite(p~v),v); we allow a link opera t ion  on any node v 
excep t  t h e  roo t  of the  t ree.  Note t ha t  each  se t  exist ing 
during the  p roces s  induces  a s u b t r e e  of T; the  n a m e  of 
the  se t  is the  roo t  of the  co r r e spond ing  sub t ree .  

This vers ion  of se t  union differs f rom the  .genera l  
• p r o b l e m  in t h a t  the "union t ree"  T is known in advance.  
We can  use  our  knowledge of T to p r e c o m p u t e  the 
answers  to finds on small  sets .  The resul t ing a lgor i thm 
combines  table look-up on small  se t s  with an a -a lgo r i thm 
r u n  on a universe  of size o(n). The a lgor i thm needs  
O(m+n) t ime and O(n) space  on a r a n d o m - a c c e s s  
mach ine  with un i fo rm cos t  m e a s u r e  and log n 1 word 
length  [AHU1974, pp. 12-19]. 

We develop our  a lgor i thm in Sect ion 2 of the paper .  
In Sect ion 3 we ske tch  an  ex tens ion  of the  a lgor i thm to 
the  case  in which the union t r ee  can grow by single-node 
additioms (incremental tree set union). The extended 
a lgor i thm also runs  in O(m+n) t ime and 0(n)  space.  Sec- 
t ion 4 l ists  eleven applications.  

9.. b--TATIC TREE SET UNION 

To solve the  s ta t ic  t r ee  s e t  union prob lem,  we part i-  
t ion the  nodes  of T into rrticrosets. This par t i t ion  has  
noth ing  to do with the  se t s  defined by the  link operat ions;  
i t  is c o m p u t e d  in a p r e p r o c e s s i n g  s t ep  and r em a ins  fixed 
as  the  links and finds are  executed.  The m i c r o s e t s  have 
t h r e e  proper t i e s :  

(a) Every m i e r o s e t  conta ins  fewer t h a n  b nodes,  where  b 
is a p a r a m e t e r  to be  chosen  later .  

(b) There  are  O(n /b )  microse t s .  
(c) If S is a mic rose t ,  t he re  is a node r £ S such  tha t  

iv(v)  e S! , J}r ]  for  every  node v e S.  Node r is called 
the  root of m i c r o s e t  S.  The se t  SC)}rl induces  a 
s u b t r e e  of T with roo t  r ;  thus  S induces  a fores t  con- 
s is t ing of s u b t r e e s  with a c o m m o n  p a r e n t  in T. As a 
specia l  case  we allow r to be null; in this case S 
induces  a s u b t r e e  of T whose roo t  is the root  of T. 

We shall descr ibe  the  se t  union a lgor i thm in a top- 
down fashion, c o n c u r r e n t l y  descr ibing the da ta  s t r u c t u r e s  
it  uses.  We n u m b e r  the  mic rose t s  consecut ively f rom one. 
Within e a c h  mic rose t ,  we n u m b e r  the ver t ices  consecu-  
tively f rom one, according to a p r e o r d e r  for the induced 

I Throughout this paper log denotes logarithm to the base two. 

fo res t  ( the  m i c r o s e t  is a fo res t  by (c)). With each  ve r tex  
v ,  we s to r e  micro(v), the  n u m b e r  of the mic r o se t  contain-  
ing v,  and number(v),  the  p r e o r d e r  n u m b e r  of v within i ts  
mic rose t .  Thus the  pa i r  micro(v), number(v)  uniquely 
identif ies v.  For  e a c h  mic r o se t  i we build a table 
node(i, *) s u c h  tha t  node( i j )  is the node in m ic r o se t  i with 
n u m b e r  j .  (Note t h a t  node is not a two-dimensional  
ar ray ,  s ince the  r ange  of values of j depends  on the  value 
of i; r a the r ,  it is a collect ion of one-dimensional  a r rays . )  
All the  node tab les  t o g e t h e r  requi re  a to ta l  of n words  of 
m e m o r y  s ince t he r e  is one e n t r y  p e r  node. 

To r e p r e s e n t  the collect ion of se t s  defined by the l /nk 
opera t ions ,  we m a r k  the  nodes  tha t  a re  se t  names .  To 
s to re  the  marks ,  we use a table mark(i,*) for each  
m i c r o s e t  i ,  s u c h  tha t  mark(i,j) = 0 ff node(i,j) is m a r k e d  
(i.e., it is a se t  name) ,  and mwrk(id) = 1 otherwise.  We 
allow the  index j to have the range  1 < - ]  < b  for every  
value of i; if j is not  the n u m b e r  of a node in m ic ro se t  i ,  
mark(i , j)  = O. For any value of i, mark(i, *) is a vec to r  of 
b - 1  bits. By choos ing  b _< ~v where  w is the word l eng th  
of the  r a n d o m - a c c e s s  machine ,  we can  fit each  m a r k  table 
into a single c o m p u t e r  word. We can  also t r ea t  each  m a r k  
table  as  an  in tege r  (whose b inary  r e p r e s e n t a t i o n  is the 
s e q u e n c e  of bi ts  in the  table)  and p e r f o r m  a r i thmet ic  on 
th is  i n t ege r  in 0(1) time. 

Our i m p l e m e n t a t i o n  of the link opera t ion  is such  tha t  
its only effect is to  a l ter  the m a r k  tables,  initially 
rrmrk(i,j) = 0 for  all m i c r o s e t s  i and all values of j in the 
r a n g e  1 -< j < b. (initializing the  m a r k  table for a given 

mic r o se t  i r equ i r e s  0(1) time: we se t  mark(i, *) = 0.) We 
define l/n/c as follows: 

1. p r o c e d u r e  link(v); 

2. mark(micro(v), number(v))  := 1 

3. e n d  link; 

Execut ing link t akes  0(1) t ime. (To do this we p recom-  
pe te  the  powers  of two, 2), {3"_< j < b. Then Step 2 can  be 
i m p l e m e n t e d  by  a s imple s equence  of a r i thmet ic  opera-  
tions. ) 

The ope ra t i on  find(v) m u s t  r e t u r n  the  n e a r e s t  
m a r k e d  ance s to r  of v; t ha t  is, the  nea r e s t  a n c e s t o r  
nocle(i,]) of v such  tha t  mark(i j )  = 0. (We r e ga r d  a node 
as an a n c e s t o r  of itself.) To c a r r y  out  find(v) we use  a 
combina t i on  of two methods .  To give access  within 
mic rose t s ,  we use the  following p r o c e d u r e  (whose imple- 
m e n t a t i o n  we descr ibe  later):  

r, ticro f i n d  ( v ) : Re tu r n  the n e a r e s t  m a r k e d  a n c e s t o r  of v 
that  is in the s ame  mic rose t  as v. If 
t h e r e  is no such  node (the n e a r e s t  
m a r k e d  a nc es to r  of v is in a n o t h e r  
mic rose t ) ,  r e t u r n  the  root  of the 
m i c r o s e t  containing v. 

To give access across microset boundaries, we maintain a 
collection of disjoint sets ,  called macrosets, whose ele- 
m e n t s  a re  the roo ts  of the m i c r o s e t s  (excluding null). We 
man ipu la t e  the  m a c r o s e t s  by m e a n s  of the opera t ions  
makemacroset, macrofind, and macrounite. We initialize 
the  m a c r o s e t s  by execut ing ma&emacroset(v) for every 
m i c r o s e t  roo t  v, thus  making  each  s u c h  root  into a single- 
ton  m a c r o s e t .  

There  are severa l  ways to i m p l e m e n t  the  opera t ions  
on maCrosets .  One is to use any a-algor i thm.  This will be 
the  m o s t  des i rable  choice in Sect ion 3, for the i nc remen-  
tal vers ion of the algori thm. Here it suffices to use  a 
s impler  a lgor i thm,  which mere ly  re labels  the smal le r  set  
in a union  [AHU. pp. 124-128]. The t ime for m opera t ions  
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on a universe  of size n is 0 (m + n log n) .  
We define f ind as follows. (Our p r o g r a m  no ta t i on  is 

essent ia l ly  Di jkst ra ' s  g u a r d e d  c o m m a n d  language  [D 1976] 
a u g m e n t e d  with p rocedures ;  we use  a vert ical  b a r  "]" in 
place of Dijkstra 's  box . . . .  .1 

~. f tmcUon find(v); 
2, local z; 
3. z := ~; 
4. if  micro(x) ~ micro(microfivtd(x)) -* 
5. x := macroj~nd(microfind(x)); 
8. . domicro(x)  ~ micro(microjqnd(z)) -~ 
v . m~croun~e  Cmicr¢~d(~ ), =); 
8. x := macrofind(z) 
9. od  
10. fi; 
11. returtl  mic~ofind(x) 
12. end find; 

L e m m a  1. The find a lgor i thm is correct. 

Proof .  For  .any node x,  if micro(z) ~ micro  
(micrroJ~nd(z)), t hen  microfind(x) iS the root  of the 
micr~oset containing x.  It  follows by induct ion  tha t  af ter  
Step 5. the node deno t ed  by variable x in the  p r o g r a m  is 
always a m i c r o s e t  root ,  and the m a c r o s e t  opera t ions  are 
e x e c u t e d  only on m i e r o s e t  roots.  For any value of x,  
microfind(z) is an  a n c e s t o r  of x,  and the  only possible 
m a r k e d  node on the t r ee  pa th  joining x and microfind(x) 
is mierofind(x). Another  induct ion  shows tha t  af ter  any 
s tep,  for any rn lc rose t  roo t  y,  manrofind(y) is the n e a r e s t  
a n c e s t o r  y '  of y such  tha t  y '  is a m i e ro se t  roo t  and the 
o p e r a t i o n  macrounite(microfind(y') y'), has  not  been  
pe r fo rmed .  F u r t h e r m o r e  the  only possible m a r k e d  node 
on the t r ee  p a t h  joining y and macrofind(y) is 
macrofind(y). A th i rd  induct ion shows that ,  for the nodes  
deno ted  by var iables  x and v in the p rog ram,  x is always 
an  a n c e s t o r  of v,  and the  only poss ible  m a r k e d  node on 
the  t r ee  p a t h  j~ining v and x is x. The c o r r e c t n e s s  of the 
algorithm is immediate; termination is guaranteed by the 
fact.that each successive value of x is a proper ancestor 
of the previous value. • 

L e m m a  2. If b is ~(log n )  and each  execut ion  of 
microfind r e q u i r e s  0( i )  t ime, then  the  tota l  t ime for m 
i n t e r m i x e d  link andfind opera t ions  is 0 (m + n) .  

Proof. The li~11c ope ra t i ons  requi re  a total  of 0 (n )  time, 
The p roo f  of L e m m a  1 implies  tha t  jus t  before  Step 7 in 
find, z and rnicrofind(x) are in different mac rnse t s ,  Thus 
the  total  n u m b e r  of execu t ions  of Step 7, s u m m e d  over all 
the  finds, is O(n/b) .  It follows tha t  the total t ime for all 
the  finds is O ( m + n / b  I plus the t ime for the macrounite 
and macrofind opera t ions .  There  are  m + O ( n / b  1 of 
these ,  e x e c u t s d  on  a universe  of raze O(n/b) ,  Hence the 
t ime is O(m+O(n/b I+ O(n/b 1logO(n/b)1,  which is 
O(m+n) ff b is [}(log n).  • 

If an a - a lgo r i t hm is used ~or the m a c r o s e t  opera t ions  
a s imi lar  e s t ima te  shows the .~ime is linear. Actually an 
a - a l g o r i t h m  ~llows b to a s s u m e  values much smal le r  t h a n  
~}(log n). For  ins tance  in Sect~ion 3, b will be O(log log n )  
and the l inear  t ime bound  still!holds iT 1975]. 

Initializing the m a c r o s e t s  r equ i r e s  O(n/b 1 time. We 
m u s t  still descr ibe  how to i~itial~ze the  m i c r o s e t s  and 
their  da ta  s t r u c t u r e s  and how ~te ca r ry  out  microfind. Let 
us f i r s t  cons ider  the la t te r  p roblem.  We need  a c o m p a c t  
way to r e p r e s e n t  the  fores t  (in T) ~nduced by a microse t .  
With each  m i c r o s e t  i we s tore  ~ts root,  denoted  by root(i), 
The topology of the  fores t  is r e p r e s e n t e d  in a table 

forest(i, "). where  for, est(i,?) is the n u m b e r  of ch i ld ren  of 
node(i,j). Recall t ha t  the  fores t  is a~urnbered in p r e o r d e r .  
Hence it is uniquely d e t e r m i n e d  by  forest(i. *), and in fact  
it can  be c o n s t r u c t e d  f rom ~orest(i, ") in l inear  (0(b))  
time. 

We u s e - t h e  :following encoding scheme to  r e p r e s e n t  
2orest(i, *) by a 'bit vector: ~kn entry forest(i,j) = c is 
encoded as 10 c ~, and these  en t r i e s  are c o n c a t e n a t e d  
t oge the r  in a rde r  of increas ing  i. The resu l t ing  bit  vec to r  
has  l eng th  bess t h a n  twice the m~mber  of nodes  in the 
forest ,  i.e., at  m o s t  2 b - 3  bits.  So ff we choose  b so t ha t  
2b - 3  < zv we can fit each  forest table into a single com- 
pu t e r  word. Hence .we can  t r e a t  a forest  table  as an 
in teger  on which we can do a r i t hme t i c  in 0(1) t ime.  In 
pa r t i cu la r  given such  an in tege r  we can c o n s t r u c t  
f~rest(i, *), and hence  the fo res t  itself, in 0(b) time• Con- 
versely given the fores t  we can  c o n s t r u c t  the c o r r e s p o n d -  
ing bit vec to r  in 0(b)  time. 

To facili tate microfind mperat ions we c o n s t r u c t  a 
t h ree -d imens iona l  table anszugr(f, ,a, j). The indices f ,  a 
and j r ange  over [0. ,22b-a-l] ,  [0.;2~-1-1]. and [1 . . b -1 ] ,  
respect ively!  s We i n t e r p r e t  f as a fores t  table, a as a 
m a r k  table , -and # as a node n~rnber.  We define an_~'wer(f, 
a , j )  to  be k > 0 d f f  is a p o s s l b l e  fo res t  table and l a t h e  
forest  for f ,  node k is the  n e a r e s t  a n c e s t o r  of node j with 
a ( k /  = 0; areswer,(f, a, j )  is 0 if f is not  a possible  fo res t  
table or if it is bu t  no node k eKists. 

Given the  answer  table, we can define micvofind as 
follows: 

1. f u n c t i o n  microfind(v): 
2. local i. j, k; 
3. i .'= micro(v)}] .'= nurrtber(.~)," k .'= 

az~zver (f c~r est (i, *), mazfc S, ~, ]); 
4. re t i re 'n i l  k cO-*rood( i )  I 

k > 0 - . ~ n o d e ( i , k )  
5. end rrticrofind; 

Executing rnicrogqnd takes 0(11 time, as required in the 
hypothesis of.Lemma 2. 

To construct the answer table, we iterate over a]] 
OSSibde pairs of values f in [0..~b--s-i] and a in 
..~°~Z-lJ. For each pair f,a, we can compute 

e~(f, aj) for all j in the range [l..b-1] in O(b) time, 
as follows. We interpret f according to the encoding 
scheme for forests. If f does not represent a forest the 
entries in ~nmmer are 0. Otherwise we construct the 
forest 'for f. We interpret a as a mark table for f. Then 
we compute ans~wer(f, a, ]) for all j by traversing the 
forest in preorder, always rememherin~ the most previ- 
ously reached node k with a(k) = 0. Details are left to 
the reader. 

]f we choose b so that b2 sb-4= 0(n), we can con- 
struct:the entire answer table in 0(n) time. Note that this 
eonstm/ction is part of the initialization and only occurs 
once. "This choice of b also implies that the answer table 
uses 0(n) ~pace. 

The last  p a r t  of the  a lgor i thm to be filled in is the  ini- 
t ialization of the  m i c r o s e t s  and the i r  assoc ia ted  data  
s t r u c t u r e s .  We divide the  t ree  T into m i c r o s o t s  by 
t r ave r s ing  it in p o s t o r d e r .  For each  node v, we main ta in  
a count  d(v 1 of its r emain ing  d e s c e n d a n t s  (including 
i tse l f ) -not  yet  placed in a m i c r o s e t  When placing a node 
in a m~croset ,  we delete  it f rom the t ree.  To decide when 
to fo rm mic rose t s ,  we apply the following s t eps  to each  
node v in p o s t o r d e r  (we a s s u m e  tha t  the  chi ldren of each  
node ~re o rde red  arbi t rar i ly) .  

2 0 c ~S a vector:of C zeroes, 
'~12. ,k ] dcnotes the set of integers 4. s~ch thatj ~ % ~ k • 
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Step  i .  

52ep 2. 

S tep  3. 

Let d(.v) = 1 and  let w be the first  child of v (or 
~m/l if t h e r e  is no such  child). 

b + l  While d ( v )  < - - ~  and ~v # nzdl, r ep lace  d(v)  
by d(v)  + d(zv) and zv by the  nex t  child of v 
a f t e r  to (or n u / l  if t he r e  is no s u c h  child). 

b + l  
If d(w) < ~ p r o c e s s  the  next  ve r tex  in pos- 

to rde r .  Otherwise fo rm a new m i c r o s e t  consis t -  
ing of all d e s c e n d a n t s  of the remain ing  ch i ld ren  
of v up to b u t  no t  including w.  Assign this  
m i c r o s e t  the  next  available n u m b e r ,  say i .  
Define the  roo t  of the m i c r o s e t  to be v.  N u m b e r  
t h e  ver t i ces  u in the  m i c ro se t  consecut ive ly  
f rom one in p reo rde r ,  defining micro(u) and 
number(u)  for  each  such  u .  Build node(i, ~), 
marie(i, ~), and forest(i, *) ( the  last  two encoded  
as bit vectors) .  Delete all ver t ices  in the  
m i c r o s e t  f rom the  t ree.  Let d ( v ) =  1. Go to 
S tep  2. 

After the tree root is processed, we form one last 
microset consisting of all the remaining vertices (includ- 
ing at least the tree ~root); the root of this microset is 
nu/l. 

For the procedure to be correct, we must have b -> 2. 
Then in Step 2 it is always the case that d(zo)< b+1 

2 
Hence in.Step 3 d(v),< b +i, and every microset fonmed 
contains fewer than b nodes. (The last microset contains 

b + l  . ., 
fewer t h a n  ~ n o s e s . )  'Thus the  mic rose t s  have !pro- 

p e r t y  (a). (See the ~beginning of this  sec t ion  for the  
definition of p r o p e r t i e s  (a), (b), and (c)). Every mic~oset  
excep t  the  last  conta ins  at leas t  ~ nodes.  Thus the 

f ~  

total n u m b e r  of tract©sets is at  m o s t  2~__n, + 1, and the  
m i c r o s e t s  have p r o p e r t y  (b). P r o p e r t y  (c) is obvious by 

u - [  

cons t ruc tmn .  Cons t ruc t ing  a m i c r o s e t  takes  t ime propor -  
tional to the n u m b e r  of nsdes  it contains;  thus  the tota l  
t i m e  to c o n s t r ~ c t  the mLcrosets  is 0(n) .  

This comp{letes our  qdescription of the  algori thm. Let 
us s u m m a r i z e  the cons t r a in t s  on b. We need  b -~ 2 for the 
m i c r o s e t  eonstT~ctton, b = Q(log n )  for the  t ime bound  of 
L e m m a  2 to al~ply, b2  ab-4 = 0 (n)  to c o n s t r u c t  the  answer  
table in O(n) ~ime and space,  and 2b - 3  < zv, where  ~w is 
the word length, to fit each  fores t  table and m a r k  table 
into a single word Of s torage.  Assuming zv = log n ,  the  
c ' b 1 n home = ]~ - | og (  lo--~--~ / is sat isfactory.  (As noted  af ter  

the proof of  L e m m a  2, m u c h  smal le r  values of b sUffice 
when an  a -a lgor i thm .is used. Thus we obtain  the following 
theorem:  

T h e o r e m  ~l. With an  appropr i a t e  choice of b, the algo- 
r i t h m  for  s ta t ic  t r ee  se t  union runs  in 0(m + n )  t t rne.w/th 
0(v.) p r ep roces s ing  and uses  0(n)  space.  = 

A special  case  tlnat deserves  m en t i on  is when the 
union t r ee  T is a path.  TbJs case has  many  appl icat ions  
(see Sect ion 4) and is s o m e w h a t  s impler  t han  the gemeral 
case. Each n~licroset can be taken as a path of b - 1  n~des. 
(~.~e las t  rmcrose t  can be padded out  with d u m m y  nodes.)  
This e l imina tes  the need for the fores t  encoding scheme,  
and the  answer  table ]~ecomes two-dimensional  ins t ead  of 
three .  In  addi t ion the  m i c ro se t  init ialization is simplified 
since t he r e  is no need for  a depth-f i r s t  s e a r c h  of T. 

in p rac t i ce  some c o m p u t e r s  allow the answer  talJle to 
be el iminated ,entirely: Wtten the m i c r o s e t  is a p a t h  the 
answer  table  se rves  to locate the  first  zero bit beyond a 

.given bit i~osition in a m a r k  table. Some c o m p u t e r s  can  

do this  in ~one ~or two mach ine  ins t ruc t ions .  For ins tance  
in the  CDC Cyber family the floating poin t  Normalize 
i n s t ruc t i on  execu te s  in constant time [Th]. If we r e v e r s e  

the robes of zero  and  one in the  m a r k  table  we c a n  ex t r ac t  
t h e a t e r  i n fo rma t ion  f rom a m a r k  table in cons t an t  
t ime. Hence  "there is no need  for the answer  table  or t h e  
p r e p r o c e s s i n g  a s soc i a t ed  with it. 

The a lgo r i thm for  p a t h  union t r e e s  was i m p l e m e n t e d  
i n ' t h e  C progra~nrn ing  language and  r u n  on  a VAX 11/780. 
(A two,d imens iona l  answer  table was used.)  The a lgor i thm 
was~compared  to the  usua l  a -a lgor i thm based  on weighted  
• union  and  p a t h  c o m p r e s s i o n  [T1975]. Data was g e n e r a t e d  
b a t h  r a n d o m l y  and in ways s imulat ing se t  union in the 
appl ica t ions  of Sec t ion  4. The s ta t ic  t ree  a lgor i thm was 
f a s t e r  in m a n y  expe r imen t s .  For  ins tance  on r a n d o m  
data  wi th  n ranging  f rom 200 to 1000, the  t ime for the 
s ta t ic  t r ee  ,a lgor i thm was .6 t ha t  of the a -a lgor i thm when  
t h e r e  was one f i n d  pe r  unite, and .7 when t he re  were two 

f i n d s  p e r  un i t e  ( the c o m m o n  cases) .  The s ta t ic  t r ee  algo- 
r i t h m  r e q u i r e d  less da ta  space  (eg., 1160 words  v e r su s  
3000 w~rds  for  n = 1000). More detai ls  are  in [Hav]. It is 
p r e m a t u r e ' t o  draw conclus ions  f r o m  this l imited experi-  
ence,  b u t  t h e s e  r e su l t s  cer ta in ly  do not  rule out  the  possi- 
bility Of o u r  a lgor i thm being useful  in prac t ice .  

3. I N ~ A L  TREE SET UNION 

We can  ex tend  the  a lgor i thm of Sect ion 2 to the case 
in which  the t r ee  T is allowed to grow a node at  a t ime. 
We define the  increzr~ental tree set union p r o b l e m  as fol- 
lows. Initially T cons i s t s  of a single node, the root. In 
addi t ion to f ind and linIc operat ions ,  we allow opera t ions  
of.the following kind: 

g row(v ,zo) :  Add w to T by making  v its pa ren t .  This 
ope ra t i on  is only allowed if v is a node in T 
and w is a new node not  in T. 

Note t ha t  the  n u m b e r  of gTo~9 opera t ions  is n -1.  

Our a lgor i thm for i nc remen ta l  t ree  se t  union  is simi- 
lar to the  a lgor i thm in Sect ion 2, with two main  
differences.  F i r s t  the  fores t  encoding s c h e m e  for 
m i c r o s e t s  c anno t  be used,  since a grow opera t ion  changes  
p r e o r d e r  numbe r s .  Ins tead  we r e p r e s e n t  the topology of 
a m i c r o s e t  by  a p a r e n t  table. The pa r e n t  table can be 
s t o r e d  in one c o m p u t e r  word if we choose b so tha t  
( b - 1 )  ling b] < ~ .  This gives a slight increase  in the  size of 
the  ,answer  table  for a given b. However choosing b as 

® ( ~ )  (or even smal ler )  and using an  a -a lgor i thm log mg n 
for m a c r o s e t s  allows the l inear  t ime bound to be main- 
tained. 

The second  difference is in the  c o n s t r u c t i o n  of 
mic rose t s ,  which change  over  time. The a lgor i thm for 
~ r o ~  adds a node to a microse t .  When an addit ion causes  
a m i c r o s e t  to  have b nodes,  it is split into 0(1) mic rose t s .  
The spli t t ing opera t ion  is s imilar  to the m i c r o s e t  con- 
s t ruc t ion  in Sect ion 2. Details can  be found in [GT]. 

We conclude: 

T h e o r e m  2. With an  app rop r i a t e  choice of b, the algo- 
r i t h m  for i n c r e m e n t a l  t r ee  set  union  r u n s  in O(rn + n )  t ime 
with 0 (n)  p r e p r o c e s s t n g  (to c o n s t r u c t  the  answer table)  
and uses  0(n)  space.  = 
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4. APPLICATIONS 

We conclude by listing eleven applications of our algo- 
rithms. (The list is intended to be illustrative, not 
inclusive.) For each problem except one, we obtain a 
linear-time algorithm (improving the previously best 
almost -line at-tinge algorithm). 

The ~irst five applications use static tree set union in 
the special case where the union, tree T, is a paLh of n 
nodes. 

(i) Two@~,'oeesso~ scheduling. The input consists of a 
collection of unit-time tasks with a partial order. The 
object is to schedule the tasks on two processors to 
minimize the last completion time. The algorithm of 
Gabow [G1982] runs in 0(re+n) til:ne, improved from 
0~m+na(n,n)), when implemented using static tree set 
union. Here n is the number o[ tasks and m is the 
number of explicit constraints definin~ the partial order. 

(21 p-processor scheduling algorithms. There are  two 
re la ted  appl icat ions. The f irst is comput ing a schedule 
f r o m  a p r i o r i t y  list.  The i n p u t  is a co l l ec t i on  of u n i t - t i m e  
t a s k s  wi th  a par t ied ,order,  a p r i o r i t y  l is t  giving a to t a l  
o r d e r  of t h e  t a sk s ,  and  a n u m b e r  of p r o c e s s o r s  p -<- n .  
The ob j ec t  is to s c h e d u l e  t h e  t a s k s  so  t h a t  t h e  n e x t  t a s k  
to  b e g i n  is t he  f i rs t  avai lable  t a s k  in  t he  p r io r i t y  l i s t  The 
a l g o r i t h m  of Se th /  iS] r u n s  in  0 ( r e + n )  t i me ,  i m p r o v e d  
f r o m  0 ( m  +na(n,n)), us ing  s t a t i c  t r e e  s e t  un ion .  

The  s e c o n d  app l i c a t i on  is o p t i m u m  s c h e d u l i n g  on  a n  
in t e rva l  dag.  The i n p u t  is a co l l ec t ion  of u n i t - t i m e  t a s k s  
wi th  a pa r t i a l  o r d e r  t h a t  is an  in t e rva l  dag,  a n d  a n u m b e r  
of p r o c e s s o r s  p -< n .  The ob jec t  is to  s c h e d u l e  t h e  t a s k s  
to m i n i m i z e  t h e  l a s t  c o m p l e t i o n  t ime .  P a p a d i m i t r i o u  and  
Y a n n a k a k i s  show t h a t  t h e  p r io r i ty  l is t  of a n  o p t i m u m  
s c h e d u l e  c a n  be  found  on  0 ( r e + n )  t i m e  [PY, G1981]. 
Using t h e  above a l g o r i t h m  for p r io r i ty  l ists ,  t h e i r  m e t h o d  
r u n s  in 0 ( m  + n )  t i me ,  i m p r o v e d  f r o m  O(m +n a(n,n)). 

(3) The off-line ~inproblem [AHU:[974, pp. 139-]41].  
The ob jec t  is to , m a i n t a i n  a s e t  of i n t e g e r s  in t h e  r a n g e  
[ 1. .n ] u n d e r  two ope ra t i ons :  insert(i), which  adds  e l e m e n t  
i to t he  se t ,  and  extract rain, which  d e l e t e s  and  r e t u r n s  
t he  m i n i m u m  e l e m e n t .  If e a c h  i n t e g e r  is i n s e r t e d  only 

~noe  a n d  !the .en t i re  s e q u e n c e  of o p e r a t i o n s  is g iven  off- 
lime, s t a t i c  t r e e  s e t  u m o n  app l i e s  to solve th i s  p r o b l e m  in 
D(~) t ime ,  i m p r o v e d  f r o m  0 (n  a(n,n)). 

~(4) Matching ~n ice,vex gr~lahs and scheduling u~2h 
v~/e- , :e  . b i ~ a s  andf dead l /n~s .  T hese  two p r o b l e m s  a r e  
~los~ly r e l a t ed ,  tin t h e  first ,  t h e  ob jec t  is to f ind a m a x -  
i m u m  c a r d i n a l i t y  m a t c h i n g  on  a c o n v e x  b i p a r t i t e  g r a p h .  
The a lg=r l thna  of Lipski  ~ n d  P r e p a r a t a  [ L P J r u n s  in 0 ( n )  
t i m e ,  i m p r o v e d  i f rom 0 tnc~(n ,n ) ) ,  u s ing  s t a t i c  t r e e  s e t  
un ion .  H e r e ; n  i s : t he  n u m b e r  of ve r t i c e s .  

~n t h e  s e c o n d  p r o b l e m ,  t h e  i n p u t  is a co l l ec t ion  of 
un i t~ t ime  ~tasks, e a c h  hav ing  an  i n t e g e r  r e l e a s e  t i m e  a n d  
dead l ine ,  and  a n u m b e r  of p r o c e s s o r s  p -~ n .  The ob jec t  
is to  s c h e d = l e  e a c h  t a s k  b e t w e e n  i ts  r e l e a s e  t i m e  a n d  
dead l ine .  F r e d e r i c k s o n  [F] g ives  a n  a l g o r i t h m  t h a t  u s e s  
t h e  eft- l ine ra in  p r o b l e m .  Using  t he  a l g o r i t h m  of appl ica-  
t i e n  ! ( 3 ) t h e  r u n  t i m e  is 0 (n) ,  i m p r o v e d  f r o m  O(na(n,n)). 
( ] h e  s p a c e ' i s  0 ( D ~ n ) ,  w h e r e  D is t h e  l a r g e s t  dead l ine . )  

](5) FLSJ charmer routing. The i n p u t  is a s e t  of n 
t w o - t e r m i n a l  ne t s .  The  o u t p u t  is a wire l ayou t  on  a c h a n -  
ne l  s f  l e a s t  ipossible width.  The a l g o r i t h m  of P r e p a r a t a  
a n d  ILipski [PL19B2] , runs  in  0 ( n )  t i me ,  i m p r o v e d  f r o m  
0 ( . o ( ~ , ~ ) ) .  

,The n e x t  four  a p p l i c a t i o n s  u s e  s t a t i c  t r e e  s e t  un ion  in 
t h e  g e n e r a l  case .  

(6) Ne=rest .common artcestors. Abe, Hopcrof t ,  arid 
U l l m a n  [AHU1976, T1979a] give a n  O(m+na(m+n,n))- 
t ime ,  0(~z)-space a l g o r i t h m  to c o m p u t e  t h e  n e a r e s t  c o m -  
m o n  a n c e s t o r s  of m pa i r s  of n o d e s  in a n  n - n o d e  t r e e  off- 
l ine.  S ta t i c  t r e e  s e t  u n i o n  i m p r o v e s  th i s  m e t h o d  to  
D(m~H-n) tirme. Hewel a n d  T a r j an  [H, HT1982] have  also 
g iven  a i l inear - t ime  a l g o r i t h m  for th i s  p r o b l e m .  Thei r  

algorithm is more complicated than the one given here 
but extendslto solve the "half-line" problem, in which the 
tree is fixed but the ,nearest common ancestor requests 
arrive on-line, infO(m+n) time. 

i(7) P Io~  graph reducibility. Sta t i c  t r e e  s e t  u m o n  
i m p r o v e s - t h e  m e t h o d  of Ta r j an  [T1974] for  t e s t i n g  flow 
g ~ a ~  ~educdbil i ty of a n  n - v e r t e x ,  m - e d g e  g r a p h  f r o m  
D ( r r z a ( m , n ) )  to  0 ( m )  t ime .  (In flow g r a p h s  n = 0 ( m ) . )  

I(8) Two directed scanning trees, Given a flow g r a p h  
t h e  o b j e c t  is to f ind two d i r e c t e d  s p a n n i n g  t r e e s  wi th  as  
few = o m m o n  e d g e s  as  ;possible.  S t a t i c  t r e e  s e t  u m o n  
i m p r o v e s  t he  a l g o r i t h m  of Ta r j an  [T1976] for t h i s  p r o b l e m  
f r o m  0 ( m a ( m , n ) ) t o  0 ( m )  t ime .  

'(g) Sepfcrato~r~ f o r  chorda l  g r a p h s .  Given a c h o r d a l  
g ~ a ~  t h e e  .bdect is to f ind a good  s e p a r a t o r  (i.e., one  wi th  
D ( ~ )  ve r t i ce s ) .  Gi lber t  a n d  Rose [GR] p r e s e n t  a n  
D ( r t + m = ( m , n ) ) - t i m e  a l g o r i t h m .  With a s l igh t  c h a n g e  
t h e i r  a l g o r i t h m  c a n  u s e  i n c r e m e n t a l  t r e e  s e t  union.  The 
r e s u l t  is a n  O(n + m ) - t i m e  a l g o r i t h m .  

The n e x t  app l i c a t i on  u s e s  i n c r e m e n t a l  t r e e  s e t  union.  
(10) Matching on nonbip~rtite graphs. The a l g o r i t h m  

of Gabow [Gt.976] r u n s  in O(nm) t ime ,  i m p r o v e d  f r o m  
0 ( n m a ( m , n ) ) ,  u s ing  i n c r e m e n t a l  t r e e  s e t  union.  Here  n 
is t he  n u m b e r  of v e r t i c e s  a n d  m the  n u m b e r  of e d g e s  in 
t h e  g raph ;  we a s s u m e  n = 0 (m) .  A m o r e  e f f ic ien t  algo- 
r i t h m  d i s c o v e r e d  by  Micali and  Vazi rani  [MV] r u n s  in 
0(-4-f in)  t ime .  The i r  a l g o r i t h m  u s e s  d i s jo in t  s e t  union;  
Micaii and  Vazi rani  s t a t e  w i thou t  p roof  t h a t  t h e  " spec ia l  
s t r u c t u r e  of b l o s s o m s "  imp l i e s  a l i nea r  t i m e  b o u n d  if a n  
a p p r o p r i a t e  a - a l g o r i t h m  is u s e d  [MV p. 21]. However  t h e  
p roof  is c o m p l i c a t e d  (over  fifty p a g e s  long [M]). Using 
i n c r e m e n t a l  t r e e  s e t  u n i o n  g ives  t h e  0(~/-ffm) t i m e  b o u n d  
d i rec t ly .  Bo th  m a t c h i n g  a l g o r i t h m s  u s e  0 ( m )  space .  

Our  final e x a m p l e  is a d a t a  m a n i p u l a t i o n  p r o b l e m  
t h a t  is a t i m e - r e v e r s e d  ve r s i on  of d i s jo in t  s e t  union.  

(11) The set-splitting problem. Given a n  ini t ia l  s e t  
cons i s t i ng  of t h e  i n t e g e r s  }1, 2 . . . . .  h i ,  we wish  to  p r o c e s s ,  
on-line,  a n  i n t e r m i x e d  s e q u e n c e  of o p e r a t i o n s  of t h e  fol- 
lowing two types :  
s p l / t ( i ) :  Split  t h e  se t  c o n t a i n i n g  i n t e g e r  i in to  two 

se t s ,  one  con t a in ing  all i n t e g e r s  l e s s  t h a n  i ,  
t h e  o t h e r  all i n t e g e r s  g r e a t e r  t h a n  o r  eq u a l  to 
i .  

find(i): R e t u r n  t he  n a m e  of t h e  s e t  c o n t a i n i n g  i n t e g e r  
i .  

In their paper on disjoint set union [HU], Hopcroft and 
Ullman describe an 0((m +n) log* n)-time algorithm, 
where m is the number of operations and log*n is the 
"iterated logarithm," the number of times the logarithm 
must be taken to obtain a number less than one .  Using a 
variant of the static tree algorithm, we can solve this 
problem in 0(re+n) time. The method is as follows. 

First note that we can solve the set-splitting problem 
in 0(i) time per find plus 0(n log n )  time for all the splits, 
by the "relabel-the-smaller-half" method: With each 
integer i we store the name of the set containing it; when 
splitting a set, we rename the half containu~ fewer ele- 
ments (as in Section 2, and [AHU, pp. 124-129].) 

To obtain an 0(re+n) time bound for set splitting we 
combine this method with the table look-up method of 
Section 2. We partition the set [l..n] into microsets that 
are intervals of b -3 consecutive integers. Each microset 
has a root in the next microset. The n / b  roots are 
placed in a universe of macrosets, that is processed by 
the relabel-the-smaller-half method. The algorithms for 
split and find are similar to those of Section 2. One 
change is that the split operations update the macroset 
universe (as contrasted with Section 2 ~here finds ~ipdate 

the macroset universe). Choosing b =,log(,_-q--~-~_ | gives 
i ,+,.+.~ +,-,+ j 
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a l inear  algorithm. (Details of a s imilar  method for a 
different  problem can  be found in [HT].) 

In conclusion we note  t h a t  there  are impor tan t  appli- 
cat ions of se t  merging t ha t  our  a lgori thm does not  handle  
(e.g., checking the  equivalence of two DFA's IAHU p. 143- 
5], comput ing  dominators  in a flow graph  [LTJ and re l a t ed  
problems  [T1979a]). We have not  been  able to ex tend  our 
a lgor i thm to the  general  problem. Nonetheless the  spe- 
cial case we t r e a t  appears  to be significant, bo th  in theory  

• and applications. 
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