
A LINEAR-TIME ALGORITHM FOR A SPECIAL CASE
OF DISJOINT SET UNION

by

Harold N. Gabow*
University of Colorado at Boul~ler

Boulder, Colorado

a n d

Robe r t E n d r e Ta r j an
Bell L a b o r a t o r i e s

M u r r a y Hill, New J e r s e y

AtTSTRACT

This p a p e r p r e s e n t s a l i n e a r - t i m e algorithm for the
spec i a l c a s e of t h e d i s jo in t s e t u n i o n p r o b l e m in wh ich t he
s t r u c t u r e of t h e u n i o n s (def ined by a "un i on t r e e ") is
known in advanc e . The a l g o r i t h m e x e c u t e s a n i n t e r m i x e d
sequence of rn u n i o n a n d find o p e r a t i o n s on n e l e m e n t s in
0 (r n + n) t i m e a n d 0 (n) space . This is a s l igh t b u t t h e o r e t -
ica l ly s ign i f i can t i m p r o v e m e n t over t h e f a s t e s t k n o w n
a l g o r i t h m for t he g e n e r a l p r o b l e m , wh i ch r u n s in
O(ma(m+n, n)+n) t i m e a n d 0 (n) space , w h e r e a is a
f u n c t i o n a l i n v e r s e of A c k e r m a n n ' s func t ion . U s e d .as a
s u b r o u t i n e , t h e a l g o r i t h m g ives s imi l a r improvemer~ t s in
t h e e f f i c i ency of a l g o r i t h m s for solving a n u m b e r of o t h e r
p r o b l e m s , inc lud ing t w o - p r o c e s s o r s chedu l ing , t h e off-line
ra in p r o b l e m , m a t c h i n g on convex g r a p h s , f inding n e a r e s t
c o m m o n a n c e s t o r s off-line, t e s t i n g a flow g r a p h for r e d u -
cibility, a n d f inding two d is jo in t d i r e c t e d s p a n n i n g t r e e s .
The a l g o r i t h m o b t a i n s i ts e f f ic iency by c o m b i n i n g a f a s t
a l g o r i t h m for t h e g e n e r a l p r o b l e m wi th t ab le look-up on
sma l l s e t s , a n d r e q u i r e s a r a n d o m a c c e s s m a c h i n e for i t s
i m p l e m e n t a t i o n . The a l g o r i t h m e x t e n d s to t h e c a s e in
wh ich s i ng l e -node add i t i ons to t he u n i o n t r e e a re allowed.
The e x t e n d e d a l g o r i t h m is u se fu l in f inding m a x i m u m car -
d ina l i ty m a t c h i n g s on n o n b i p a r t i t e g r a p h s .

* R e s e a r c h p a r t i a l l y s u p p o r t e d by t h e Nat iona l Sc i ence
F o u n d a t i o n , Grant MCS78-18909.

Permission to copy without fei~ all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1. INTRODUCTION
The d is jo in t se t u n i o n p r o b l e m o c c u r s f r e q u e n t l y in

t h e d e s i g n of c o m b i n a t o r i a l a l g o r i t h m s [AHU 1974, pp.
124-145, HS]. We shal l f o r m u l a t e th i s p r o b l e m as follows.
We wish to c a r r y o u t a n i n t e r m i x e d s e q u e n c e of t h r e e
k i n d s of ope ra t i ons , wh ich a c c e s s a n d mod i fy a co l l ec t ion
of d is jo in t s e t s :

unite (x,y):

r n a k e s e f (x): C r e a t e a new s i n g l e t o n s e t Ix] whose n a m e is
.z . This o p e r a t i o n is only al lowed if z is in no
ex i s t i ng set .
R e t u r n t he n a m e of t he s e t c o n t a i n i n g ele-
m e n t z.
Create a new set that is the union of the sets
containing x and y. The name of the new set
is the name of the old set containing x. This
operation destroys the old sets containing z
and y.

The o p e r a t i o n s m u s t be c a r r i e d ou t on-line; t h a t is , e a c h
one must be completed before the next one is known. We
shall use n to denote the total number of elements (that
is, the number of ~%alceset operations) and m to denote
the total number of unites and finds.

This problem has many applications and has been
widely i n v e s t i g a t e d (see [T1975]; a lso [DR], [KS],
[T1979b]). The f a s t e s t known a l g o r i t h m for t h e d is jo in t
s e t u n i o n p r o b l e m r u n s in O(ma(m+n, n)+n) t i m e an d
0 (n) space , whe re a is a f u n c t i o n a l i nve r se of
A c k e r m a n n ' s f u n c t i o n [T1975, TV1982]. The re a r e in f ac t
a n u m b e r of s u c h f a s t a l g o r i t h m s , all m i n o r v a r i a n t s of
e a c h o t h e r [TV198Z]. We call t h e s e a l g o r i t h m s a-algo-
r / 2 h m s . The a - a l g o r i t h m s r u n on a p o i n t e r m a c h i n e
[T1979b] and, as one would expec t , p e r f o r m qui te well in
p r a c t i c e .

N e v e r t h e l e s s it is a n in t e l ' e s t ing t h e o r e t i c a l p r o b l e m
to d e t e r m i n e w h e t h e r t h e r e is a l i n e a r - t i m e a l g o r i t h m for
d i s jo in t s e t un ion . U n d e r c e r t a i n t e c h n i c a l r e s t r i c t i o n s ,
Q(rna(m+n, n) + n) is a lower b o u n d on t h e w o r s t - c a s e
r u n n i n g t ime of a n y s e t u n i o n a l g o r i t h m on a p o i n t e r
m a c h i n e [T1979b]. Thus to ob t a in a l i n e a r - t i m e a l g o r i t h m

© 1983 A C M 0 - 8 9 7 9 1 - 0 9 9 - 0 / 8 3 / 0 0 4 / 0 2 4 6 $ 0 0 . 7 5

246

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800061.808753&domain=pdf&date_stamp=1983-12-01

we must either confine our attention to a special case of
set union or take advantage of the more powerful capabili-
ties of random-access machines [AHU1974, pp. 12-19].
The result of this paper combines both of these ideas. We
give an algorithm that runs in linear time on a random-
access machine for the special case of set union in which
t h e s t r u c t u r e of the unions, as defined by a "union t ree" ,
is known in advance. This case occu r s in m a n y applica-
t.ions, for each of which our r e su l t gives an improved algo-
r i t hm. Although the r e su l t s m a y a p p e a r to be of only
theo re t i c in te res t , e x p e r i m e n t s with an i m p l e m e n t a t i o n of
a r e s t r i c t e d case of our a lgo r i thm indicate t h a t in prac-
t ice it is compet i t ive with a -a lgo r i thms and of ten out-
p e r f o r m s them.

We solve the following prob lem, called static tree set
uvtion. We a re given a (rooted) t r ee T of n nodes, ini-
tially every node v of the t r ee is in a s ingle ton se t ~v
named v. We denote the p a r e n t of node v in the t r ee by
p (v) ; if v is the root of the t ree, p(v) has the special
value null. We wish to p e r f o r m on-line an in t e rmixed
s e q u e n c e of f ind and link opera t ions on the sets , where
f i n d is defined as before and linIc(v) is equivalent to
unite(p~v),v); we allow a link opera t ion on any node v
excep t t h e roo t of the t ree. Note t ha t each se t exist ing
during the p roces s induces a s u b t r e e of T; the n a m e of
the se t is the roo t of the co r r e spond ing sub t ree .

This vers ion of se t union differs f rom the .genera l
• p r o b l e m in t h a t the "union t ree" T is known in advance.
We can use our knowledge of T to p r e c o m p u t e the
answers to finds on small sets . The resul t ing a lgor i thm
combines table look-up on small se t s with an a -a lgo r i thm
r u n on a universe of size o(n). The a lgor i thm needs
O(m+n) t ime and O(n) space on a r a n d o m - a c c e s s
mach ine with un i fo rm cos t m e a s u r e and log n 1 word
length [AHU1974, pp. 12-19].

We develop our a lgor i thm in Sect ion 2 of the paper .
In Sect ion 3 we ske tch an ex tens ion of the a lgor i thm to
the case in which the union t r ee can grow by single-node
additioms (incremental tree set union). The extended
a lgor i thm also runs in O(m+n) t ime and 0(n) space. Sec-
t ion 4 l ists eleven applications.

9.. b--TATIC TREE SET UNION

To solve the s ta t ic t r ee s e t union prob lem, we part i-
t ion the nodes of T into rrticrosets. This par t i t ion has
noth ing to do with the se t s defined by the link operat ions;
i t is c o m p u t e d in a p r e p r o c e s s i n g s t ep and r em a ins fixed
as the links and finds are executed. The m i c r o s e t s have
t h r e e proper t i e s :

(a) Every m i e r o s e t conta ins fewer t h a n b nodes, where b
is a p a r a m e t e r to be chosen later .

(b) There are O(n /b) microse t s .
(c) If S is a mic rose t , t he re is a node r £ S such tha t

iv(v) e S! , J}r] for every node v e S. Node r is called
the root of m i c r o s e t S. The se t SC)}rl induces a
s u b t r e e of T with roo t r ; thus S induces a fores t con-
s is t ing of s u b t r e e s with a c o m m o n p a r e n t in T. As a
specia l case we allow r to be null; in this case S
induces a s u b t r e e of T whose roo t is the root of T.

We shall descr ibe the se t union a lgor i thm in a top-
down fashion, c o n c u r r e n t l y descr ibing the da ta s t r u c t u r e s
it uses. We n u m b e r the mic rose t s consecut ively f rom one.
Within e a c h mic rose t , we n u m b e r the ver t ices consecu-
tively f rom one, according to a p r e o r d e r for the induced

I Throughout this paper log denotes logarithm to the base two.

fo res t (the m i c r o s e t is a fo res t by (c)). With each ve r tex
v , we s to r e micro(v), the n u m b e r of the mic r o se t contain-
ing v, and number(v), the p r e o r d e r n u m b e r of v within i ts
mic rose t . Thus the pa i r micro(v), number(v) uniquely
identif ies v. For e a c h mic r o se t i we build a table
node(i, *) s u c h tha t node(i j) is the node in m ic r o se t i with
n u m b e r j . (Note t h a t node is not a two-dimensional
ar ray , s ince the r ange of values of j depends on the value
of i; r a the r , it is a collect ion of one-dimensional a r rays .)
All the node tab les t o g e t h e r requi re a to ta l of n words of
m e m o r y s ince t he r e is one e n t r y p e r node.

To r e p r e s e n t the collect ion of se t s defined by the l /nk
opera t ions , we m a r k the nodes tha t a re se t names . To
s to re the marks , we use a table mark(i,*) for each
m i c r o s e t i , s u c h tha t mark(i,j) = 0 ff node(i,j) is m a r k e d
(i.e., it is a se t name) , and mwrk(id) = 1 otherwise. We
allow the index j to have the range 1 < -] < b for every
value of i; if j is not the n u m b e r of a node in m ic ro se t i ,
mark(i , j) = O. For any value of i, mark(i, *) is a vec to r of
b - 1 bits. By choos ing b _< ~v where w is the word l eng th
of the r a n d o m - a c c e s s machine , we can fit each m a r k table
into a single c o m p u t e r word. We can also t r ea t each m a r k
table as an in tege r (whose b inary r e p r e s e n t a t i o n is the
s e q u e n c e of bi ts in the table) and p e r f o r m a r i thmet ic on
th is i n t ege r in 0(1) time.

Our i m p l e m e n t a t i o n of the link opera t ion is such tha t
its only effect is to a l ter the m a r k tables, initially
rrmrk(i,j) = 0 for all m i c r o s e t s i and all values of j in the
r a n g e 1 -< j < b. (initializing the m a r k table for a given

mic r o se t i r equ i r e s 0(1) time: we se t mark(i, *) = 0.) We
define l/n/c as follows:

1. p r o c e d u r e link(v);

2. mark(micro(v), number(v)) := 1

3. e n d link;

Execut ing link t akes 0(1) t ime. (To do this we p recom-
pe te the powers of two, 2), {3"_< j < b. Then Step 2 can be
i m p l e m e n t e d by a s imple s equence of a r i thmet ic opera-
tions.)

The ope ra t i on find(v) m u s t r e t u r n the n e a r e s t
m a r k e d ance s to r of v; t ha t is, the nea r e s t a n c e s t o r
nocle(i,]) of v such tha t mark(i j) = 0. (We r e ga r d a node
as an a n c e s t o r of itself.) To c a r r y out find(v) we use a
combina t i on of two methods . To give access within
mic rose t s , we use the following p r o c e d u r e (whose imple-
m e n t a t i o n we descr ibe later):

r, ticro f i n d (v) : Re tu r n the n e a r e s t m a r k e d a n c e s t o r of v
that is in the s ame mic rose t as v. If
t h e r e is no such node (the n e a r e s t
m a r k e d a nc es to r of v is in a n o t h e r
mic rose t) , r e t u r n the root of the
m i c r o s e t containing v.

To give access across microset boundaries, we maintain a
collection of disjoint sets , called macrosets, whose ele-
m e n t s a re the roo ts of the m i c r o s e t s (excluding null). We
man ipu la t e the m a c r o s e t s by m e a n s of the opera t ions
makemacroset, macrofind, and macrounite. We initialize
the m a c r o s e t s by execut ing ma&emacroset(v) for every
m i c r o s e t roo t v, thus making each s u c h root into a single-
ton m a c r o s e t .

There are severa l ways to i m p l e m e n t the opera t ions
on maCrosets . One is to use any a-algor i thm. This will be
the m o s t des i rable choice in Sect ion 3, for the i nc remen-
tal vers ion of the algori thm. Here it suffices to use a
s impler a lgor i thm, which mere ly re labels the smal le r set
in a union [AHU. pp. 124-128]. The t ime for m opera t ions

247

on a universe of size n is 0 (m + n log n) .
We define f ind as follows. (Our p r o g r a m no ta t i on is

essent ia l ly Di jkst ra ' s g u a r d e d c o m m a n d language [D 1976]
a u g m e n t e d with p rocedures ; we use a vert ical b a r "]" in
place of Dijkstra 's box1

~. f tmcUon find(v);
2, local z;
3. z := ~;
4. if micro(x) ~ micro(microfivtd(x)) -*
5. x := macroj~nd(microfind(x));
8. . domicro(x) ~ micro(microjqnd(z)) -~
v . m~croun~e Cmicr¢~d(~), =);
8. x := macrofind(z)
9. od
10. fi;
11. returtl mic~ofind(x)
12. end find;

L e m m a 1. The find a lgor i thm is correct.

Proof . For .any node x, if micro(z) ~ micro
(micrroJ~nd(z)), t hen microfind(x) iS the root of the
micr~oset containing x. It follows by induct ion tha t af ter
Step 5. the node deno t ed by variable x in the p r o g r a m is
always a m i c r o s e t root , and the m a c r o s e t opera t ions are
e x e c u t e d only on m i e r o s e t roots. For any value of x,
microfind(z) is an a n c e s t o r of x, and the only possible
m a r k e d node on the t r ee pa th joining x and microfind(x)
is mierofind(x). Another induct ion shows tha t af ter any
s tep, for any rn lc rose t roo t y, manrofind(y) is the n e a r e s t
a n c e s t o r y ' of y such tha t y ' is a m i e ro se t roo t and the
o p e r a t i o n macrounite(microfind(y') y'), has not been
pe r fo rmed . F u r t h e r m o r e the only possible m a r k e d node
on the t r ee p a t h joining y and macrofind(y) is
macrofind(y). A th i rd induct ion shows that , for the nodes
deno ted by var iables x and v in the p rog ram, x is always
an a n c e s t o r of v, and the only poss ible m a r k e d node on
the t r ee p a t h j~ining v and x is x. The c o r r e c t n e s s of the
algorithm is immediate; termination is guaranteed by the
fact.that each successive value of x is a proper ancestor
of the previous value. •

L e m m a 2. If b is ~(log n) and each execut ion of
microfind r e q u i r e s 0(i) t ime, then the tota l t ime for m
i n t e r m i x e d link andfind opera t ions is 0 (m + n) .

Proof. The li~11c ope ra t i ons requi re a total of 0 (n) time,
The p roo f of L e m m a 1 implies tha t jus t before Step 7 in
find, z and rnicrofind(x) are in different mac rnse t s , Thus
the total n u m b e r of execu t ions of Step 7, s u m m e d over all
the finds, is O(n/b) . It follows tha t the total t ime for all
the finds is O (m + n / b I plus the t ime for the macrounite
and macrofind opera t ions . There are m + O (n / b 1 of
these , e x e c u t s d on a universe of raze O(n/b) , Hence the
t ime is O(m+O(n/b I+ O(n/b 1logO(n/b)1, which is
O(m+n) ff b is [}(log n). •

If an a - a lgo r i t hm is used ~or the m a c r o s e t opera t ions
a s imi lar e s t ima te shows the .~ime is linear. Actually an
a - a l g o r i t h m ~llows b to a s s u m e values much smal le r t h a n
~}(log n). For ins tance in Sect~ion 3, b will be O(log log n)
and the l inear t ime bound still!holds iT 1975].

Initializing the m a c r o s e t s r equ i r e s O(n/b 1 time. We
m u s t still descr ibe how to i~itial~ze the m i c r o s e t s and
their da ta s t r u c t u r e s and how ~te ca r ry out microfind. Let
us f i r s t cons ider the la t te r p roblem. We need a c o m p a c t
way to r e p r e s e n t the fores t (in T) ~nduced by a microse t .
With each m i c r o s e t i we s tore ~ts root, denoted by root(i),
The topology of the fores t is r e p r e s e n t e d in a table

forest(i, "). where for, est(i,?) is the n u m b e r of ch i ld ren of
node(i,j). Recall t ha t the fores t is a~urnbered in p r e o r d e r .
Hence it is uniquely d e t e r m i n e d by forest(i. *), and in fact
it can be c o n s t r u c t e d f rom ~orest(i, ") in l inear (0(b))
time.

We u s e - t h e :following encoding scheme to r e p r e s e n t
2orest(i, *) by a 'bit vector: ~kn entry forest(i,j) = c is
encoded as 10 c ~, and these en t r i e s are c o n c a t e n a t e d
t oge the r in a rde r of increas ing i. The resu l t ing bit vec to r
has l eng th bess t h a n twice the m~mber of nodes in the
forest , i.e., at m o s t 2 b - 3 bits. So ff we choose b so t ha t
2b - 3 < zv we can fit each forest table into a single com-
pu t e r word. Hence .we can t r e a t a forest table as an
in teger on which we can do a r i t hme t i c in 0(1) t ime. In
pa r t i cu la r given such an in tege r we can c o n s t r u c t
f~rest(i, *), and hence the fo res t itself, in 0(b) time• Con-
versely given the fores t we can c o n s t r u c t the c o r r e s p o n d -
ing bit vec to r in 0(b) time.

To facili tate microfind mperat ions we c o n s t r u c t a
t h ree -d imens iona l table anszugr(f, ,a, j). The indices f , a
and j r ange over [0. ,22b-a-l] , [0.;2~-1-1]. and [1 . . b -1] ,
respect ively! s We i n t e r p r e t f as a fores t table, a as a
m a r k table , -and # as a node n~rnber. We define an_~'wer(f,
a , j) to be k > 0 d f f is a p o s s l b l e fo res t table and l a t h e
forest for f , node k is the n e a r e s t a n c e s t o r of node j with
a (k / = 0; areswer,(f, a, j) is 0 if f is not a possible fo res t
table or if it is bu t no node k eKists.

Given the answer table, we can define micvofind as
follows:

1. f u n c t i o n microfind(v):
2. local i. j, k;
3. i .'= micro(v)}] .'= nurrtber(.~)," k .'=

az~zver (f c~r est (i, *), mazfc S, ~,]);
4. re t i re 'n i l k cO-*rood(i) I

k > 0 - . ~ n o d e (i , k)
5. end rrticrofind;

Executing rnicrogqnd takes 0(11 time, as required in the
hypothesis of.Lemma 2.

To construct the answer table, we iterate over a]]
OSSibde pairs of values f in [0..~b--s-i] and a in
..~°~Z-lJ. For each pair f,a, we can compute

e~(f, aj) for all j in the range [l..b-1] in O(b) time,
as follows. We interpret f according to the encoding
scheme for forests. If f does not represent a forest the
entries in ~nmmer are 0. Otherwise we construct the
forest 'for f. We interpret a as a mark table for f. Then
we compute ans~wer(f, a,]) for all j by traversing the
forest in preorder, always rememherin~ the most previ-
ously reached node k with a(k) = 0. Details are left to
the reader.

]f we choose b so that b2 sb-4= 0(n), we can con-
struct:the entire answer table in 0(n) time. Note that this
eonstm/ction is part of the initialization and only occurs
once. "This choice of b also implies that the answer table
uses 0(n) ~pace.

The last p a r t of the a lgor i thm to be filled in is the ini-
t ialization of the m i c r o s e t s and the i r assoc ia ted data
s t r u c t u r e s . We divide the t ree T into m i c r o s o t s by
t r ave r s ing it in p o s t o r d e r . For each node v, we main ta in
a count d(v 1 of its r emain ing d e s c e n d a n t s (including
i tse l f) -not yet placed in a m i c r o s e t When placing a node
in a m~croset , we delete it f rom the t ree. To decide when
to fo rm mic rose t s , we apply the following s t eps to each
node v in p o s t o r d e r (we a s s u m e tha t the chi ldren of each
node ~re o rde red arbi t rar i ly) .

2 0 c ~S a vector:of C zeroes,
'~12. ,k] dcnotes the set of integers 4. s~ch thatj ~ % ~ k •

248

Step i .

52ep 2.

S tep 3.

Let d(.v) = 1 and let w be the first child of v (or
~m/l if t h e r e is no such child).

b + l While d (v) < - - ~ and ~v # nzdl, r ep lace d(v)
by d(v) + d(zv) and zv by the nex t child of v
a f t e r to (or n u / l if t he r e is no s u c h child).

b + l
If d(w) < ~ p r o c e s s the next ve r tex in pos-

to rde r . Otherwise fo rm a new m i c r o s e t consis t -
ing of all d e s c e n d a n t s of the remain ing ch i ld ren
of v up to b u t no t including w. Assign this
m i c r o s e t the next available n u m b e r , say i .
Define the roo t of the m i c r o s e t to be v. N u m b e r
t h e ver t i ces u in the m i c ro se t consecut ive ly
f rom one in p reo rde r , defining micro(u) and
number(u) for each such u . Build node(i, ~),
marie(i, ~), and forest(i, *) (the last two encoded
as bit vectors) . Delete all ver t ices in the
m i c r o s e t f rom the t ree. Let d (v) = 1. Go to
S tep 2.

After the tree root is processed, we form one last
microset consisting of all the remaining vertices (includ-
ing at least the tree ~root); the root of this microset is
nu/l.

For the procedure to be correct, we must have b -> 2.
Then in Step 2 it is always the case that d(zo)< b+1

2
Hence in.Step 3 d(v),< b +i, and every microset fonmed
contains fewer than b nodes. (The last microset contains

b + l . .,
fewer t h a n ~ n o s e s .) 'Thus the mic rose t s have !pro-

p e r t y (a). (See the ~beginning of this sec t ion for the
definition of p r o p e r t i e s (a), (b), and (c)). Every mic~oset
excep t the last conta ins at leas t ~ nodes. Thus the

f ~

total n u m b e r of tract©sets is at m o s t 2~__n, + 1, and the
m i c r o s e t s have p r o p e r t y (b). P r o p e r t y (c) is obvious by

u - [

cons t ruc tmn . Cons t ruc t ing a m i c r o s e t takes t ime propor -
tional to the n u m b e r of nsdes it contains; thus the tota l
t i m e to c o n s t r ~ c t the mLcrosets is 0(n) .

This comp{letes our qdescription of the algori thm. Let
us s u m m a r i z e the cons t r a in t s on b. We need b -~ 2 for the
m i c r o s e t eonstT~ctton, b = Q(log n) for the t ime bound of
L e m m a 2 to al~ply, b2 ab-4 = 0 (n) to c o n s t r u c t the answer
table in O(n) ~ime and space, and 2b - 3 < zv, where ~w is
the word length, to fit each fores t table and m a r k table
into a single word Of s torage. Assuming zv = log n , the
c ' b 1 n home =]~ - | og (lo--~--~ / is sat isfactory. (As noted af ter

the proof of L e m m a 2, m u c h smal le r values of b sUffice
when an a -a lgor i thm .is used. Thus we obtain the following
theorem:

T h e o r e m ~l. With an appropr i a t e choice of b, the algo-
r i t h m for s ta t ic t r ee se t union runs in 0(m + n) t t rne.w/th
0(v.) p r ep roces s ing and uses 0(n) space. =

A special case tlnat deserves m en t i on is when the
union t r ee T is a path. TbJs case has many appl icat ions
(see Sect ion 4) and is s o m e w h a t s impler t han the gemeral
case. Each n~licroset can be taken as a path of b - 1 n~des.
(~.~e las t rmcrose t can be padded out with d u m m y nodes.)
This e l imina tes the need for the fores t encoding scheme,
and the answer table]~ecomes two-dimensional ins t ead of
three . In addi t ion the m i c ro se t init ialization is simplified
since t he r e is no need for a depth-f i r s t s e a r c h of T.

in p rac t i ce some c o m p u t e r s allow the answer talJle to
be el iminated ,entirely: Wtten the m i c r o s e t is a p a t h the
answer table se rves to locate the first zero bit beyond a

.given bit i~osition in a m a r k table. Some c o m p u t e r s can

do this in ~one ~or two mach ine ins t ruc t ions . For ins tance
in the CDC Cyber family the floating poin t Normalize
i n s t ruc t i on execu te s in constant time [Th]. If we r e v e r s e

the robes of zero and one in the m a r k table we c a n ex t r ac t
t h e a t e r i n fo rma t ion f rom a m a r k table in cons t an t
t ime. Hence "there is no need for the answer table or t h e
p r e p r o c e s s i n g a s soc i a t ed with it.

The a lgo r i thm for p a t h union t r e e s was i m p l e m e n t e d
i n ' t h e C progra~nrn ing language and r u n on a VAX 11/780.
(A two,d imens iona l answer table was used.) The a lgor i thm
was~compared to the usua l a -a lgor i thm based on weighted
• union and p a t h c o m p r e s s i o n [T1975]. Data was g e n e r a t e d
b a t h r a n d o m l y and in ways s imulat ing se t union in the
appl ica t ions of Sec t ion 4. The s ta t ic t ree a lgor i thm was
f a s t e r in m a n y expe r imen t s . For ins tance on r a n d o m
data wi th n ranging f rom 200 to 1000, the t ime for the
s ta t ic t r ee ,a lgor i thm was .6 t ha t of the a -a lgor i thm when
t h e r e was one f i n d pe r unite, and .7 when t he re were two

f i n d s p e r un i t e (the c o m m o n cases) . The s ta t ic t r ee algo-
r i t h m r e q u i r e d less da ta space (eg., 1160 words v e r su s
3000 w~rds for n = 1000). More detai ls are in [Hav]. It is
p r e m a t u r e ' t o draw conclus ions f r o m this l imited experi-
ence, b u t t h e s e r e su l t s cer ta in ly do not rule out the possi-
bility Of o u r a lgor i thm being useful in prac t ice .

3. I N ~ A L TREE SET UNION

We can ex tend the a lgor i thm of Sect ion 2 to the case
in which the t r ee T is allowed to grow a node at a t ime.
We define the increzr~ental tree set union p r o b l e m as fol-
lows. Initially T cons i s t s of a single node, the root. In
addi t ion to f ind and linIc operat ions , we allow opera t ions
of.the following kind:

g row(v ,zo) : Add w to T by making v its pa ren t . This
ope ra t i on is only allowed if v is a node in T
and w is a new node not in T.

Note t ha t the n u m b e r of gTo~9 opera t ions is n -1.

Our a lgor i thm for i nc remen ta l t ree se t union is simi-
lar to the a lgor i thm in Sect ion 2, with two main
differences. F i r s t the fores t encoding s c h e m e for
m i c r o s e t s c anno t be used, since a grow opera t ion changes
p r e o r d e r numbe r s . Ins tead we r e p r e s e n t the topology of
a m i c r o s e t by a p a r e n t table. The pa r e n t table can be
s t o r e d in one c o m p u t e r word if we choose b so tha t
(b - 1) ling b] < ~ . This gives a slight increase in the size of
the ,answer table for a given b. However choosing b as

® (~) (or even smal ler) and using an a -a lgor i thm log mg n
for m a c r o s e t s allows the l inear t ime bound to be main-
tained.

The second difference is in the c o n s t r u c t i o n of
mic rose t s , which change over time. The a lgor i thm for
~ r o ~ adds a node to a microse t . When an addit ion causes
a m i c r o s e t to have b nodes, it is split into 0(1) mic rose t s .
The spli t t ing opera t ion is s imilar to the m i c r o s e t con-
s t ruc t ion in Sect ion 2. Details can be found in [GT].

We conclude:

T h e o r e m 2. With an app rop r i a t e choice of b, the algo-
r i t h m for i n c r e m e n t a l t r ee set union r u n s in O(rn + n) t ime
with 0 (n) p r e p r o c e s s t n g (to c o n s t r u c t the answer table)
and uses 0(n) space. =

249

4. APPLICATIONS

We conclude by listing eleven applications of our algo-
rithms. (The list is intended to be illustrative, not
inclusive.) For each problem except one, we obtain a
linear-time algorithm (improving the previously best
almost -line at-tinge algorithm).

The ~irst five applications use static tree set union in
the special case where the union, tree T, is a paLh of n
nodes.

(i) Two@~,'oeesso~ scheduling. The input consists of a
collection of unit-time tasks with a partial order. The
object is to schedule the tasks on two processors to
minimize the last completion time. The algorithm of
Gabow [G1982] runs in 0(re+n) til:ne, improved from
0~m+na(n,n)), when implemented using static tree set
union. Here n is the number o[tasks and m is the
number of explicit constraints definin~ the partial order.

(21 p-processor scheduling algorithms. There are two
re la ted appl icat ions. The f irst is comput ing a schedule
f r o m a p r i o r i t y list. The i n p u t is a co l l ec t i on of u n i t - t i m e
t a s k s wi th a par t ied ,order, a p r i o r i t y l is t giving a to t a l
o r d e r of t h e t a sk s , and a n u m b e r of p r o c e s s o r s p -<- n .
The ob j ec t is to s c h e d u l e t h e t a s k s so t h a t t h e n e x t t a s k
to b e g i n is t he f i rs t avai lable t a s k in t he p r io r i t y l i s t The
a l g o r i t h m of Se th / iS] r u n s in 0 (r e + n) t i me , i m p r o v e d
f r o m 0 (m +na(n,n)), us ing s t a t i c t r e e s e t un ion .

The s e c o n d app l i c a t i on is o p t i m u m s c h e d u l i n g on a n
in t e rva l dag. The i n p u t is a co l l ec t ion of u n i t - t i m e t a s k s
wi th a pa r t i a l o r d e r t h a t is an in t e rva l dag, a n d a n u m b e r
of p r o c e s s o r s p -< n . The ob jec t is to s c h e d u l e t h e t a s k s
to m i n i m i z e t h e l a s t c o m p l e t i o n t ime . P a p a d i m i t r i o u and
Y a n n a k a k i s show t h a t t h e p r io r i ty l is t of a n o p t i m u m
s c h e d u l e c a n be found on 0 (r e + n) t i m e [PY, G1981].
Using t h e above a l g o r i t h m for p r io r i ty l ists , t h e i r m e t h o d
r u n s in 0 (m + n) t i me , i m p r o v e d f r o m O(m +n a(n,n)).

(3) The off-line ~inproblem [AHU:[974, pp. 139-]41].
The ob jec t is to , m a i n t a i n a s e t of i n t e g e r s in t h e r a n g e
[1. .n] u n d e r two ope ra t i ons : insert(i), which adds e l e m e n t
i to t he se t , and extract rain, which d e l e t e s and r e t u r n s
t he m i n i m u m e l e m e n t . If e a c h i n t e g e r is i n s e r t e d only

~noe a n d !the .en t i re s e q u e n c e of o p e r a t i o n s is g iven off-
lime, s t a t i c t r e e s e t u m o n app l i e s to solve th i s p r o b l e m in
D(~) t ime , i m p r o v e d f r o m 0 (n a(n,n)).

~(4) Matching ~n ice,vex gr~lahs and scheduling u~2h
v~/e- , :e . b i ~ a s andf dead l /n~s . T hese two p r o b l e m s a r e
~los~ly r e l a t ed , tin t h e first , t h e ob jec t is to f ind a m a x -
i m u m c a r d i n a l i t y m a t c h i n g on a c o n v e x b i p a r t i t e g r a p h .
The a lg=r l thna of Lipski ~ n d P r e p a r a t a [L P J r u n s in 0 (n)
t i m e , i m p r o v e d i f rom 0 tnc~(n ,n)) , u s ing s t a t i c t r e e s e t
un ion . H e r e ; n i s : t he n u m b e r of ve r t i c e s .

~n t h e s e c o n d p r o b l e m , t h e i n p u t is a co l l ec t ion of
un i t~ t ime ~tasks, e a c h hav ing an i n t e g e r r e l e a s e t i m e a n d
dead l ine , and a n u m b e r of p r o c e s s o r s p -~ n . The ob jec t
is to s c h e d = l e e a c h t a s k b e t w e e n i ts r e l e a s e t i m e a n d
dead l ine . F r e d e r i c k s o n [F] g ives a n a l g o r i t h m t h a t u s e s
t h e eft- l ine ra in p r o b l e m . Using t he a l g o r i t h m of appl ica-
t i e n ! (3) t h e r u n t i m e is 0 (n) , i m p r o v e d f r o m O(na(n,n)).
(] h e s p a c e ' i s 0 (D ~ n) , w h e r e D is t h e l a r g e s t dead l ine .)

](5) FLSJ charmer routing. The i n p u t is a s e t of n
t w o - t e r m i n a l ne t s . The o u t p u t is a wire l ayou t on a c h a n -
ne l s f l e a s t ipossible width. The a l g o r i t h m of P r e p a r a t a
a n d ILipski [PL19B2] , runs in 0 (n) t i me , i m p r o v e d f r o m
0 (. o (~ , ~)) .

,The n e x t four a p p l i c a t i o n s u s e s t a t i c t r e e s e t un ion in
t h e g e n e r a l case .

(6) Ne=rest .common artcestors. Abe, Hopcrof t , arid
U l l m a n [AHU1976, T1979a] give a n O(m+na(m+n,n))-
t ime , 0(~z)-space a l g o r i t h m to c o m p u t e t h e n e a r e s t c o m -
m o n a n c e s t o r s of m pa i r s of n o d e s in a n n - n o d e t r e e off-
l ine. S ta t i c t r e e s e t u n i o n i m p r o v e s th i s m e t h o d to
D(m~H-n) tirme. Hewel a n d T a r j an [H, HT1982] have also
g iven a i l inear - t ime a l g o r i t h m for th i s p r o b l e m . Thei r

algorithm is more complicated than the one given here
but extendslto solve the "half-line" problem, in which the
tree is fixed but the ,nearest common ancestor requests
arrive on-line, infO(m+n) time.

i(7) P Io~ graph reducibility. Sta t i c t r e e s e t u m o n
i m p r o v e s - t h e m e t h o d of Ta r j an [T1974] for t e s t i n g flow
g ~ a ~ ~educdbil i ty of a n n - v e r t e x , m - e d g e g r a p h f r o m
D (r r z a (m , n)) to 0 (m) t ime . (In flow g r a p h s n = 0 (m) .)

I(8) Two directed scanning trees, Given a flow g r a p h
t h e o b j e c t is to f ind two d i r e c t e d s p a n n i n g t r e e s wi th as
few = o m m o n e d g e s as ;possible. S t a t i c t r e e s e t u m o n
i m p r o v e s t he a l g o r i t h m of Ta r j an [T1976] for t h i s p r o b l e m
f r o m 0 (m a (m , n)) t o 0 (m) t ime .

'(g) Sepfcrato~r~ f o r chorda l g r a p h s . Given a c h o r d a l
g ~ a ~ t h e e .bdect is to f ind a good s e p a r a t o r (i.e., one wi th
D (~) ve r t i ce s) . Gi lber t a n d Rose [GR] p r e s e n t a n
D (r t + m = (m , n)) - t i m e a l g o r i t h m . With a s l igh t c h a n g e
t h e i r a l g o r i t h m c a n u s e i n c r e m e n t a l t r e e s e t union. The
r e s u l t is a n O(n + m) - t i m e a l g o r i t h m .

The n e x t app l i c a t i on u s e s i n c r e m e n t a l t r e e s e t union.
(10) Matching on nonbip~rtite graphs. The a l g o r i t h m

of Gabow [Gt.976] r u n s in O(nm) t ime , i m p r o v e d f r o m
0 (n m a (m , n)) , u s ing i n c r e m e n t a l t r e e s e t union. Here n
is t he n u m b e r of v e r t i c e s a n d m the n u m b e r of e d g e s in
t h e g raph ; we a s s u m e n = 0 (m) . A m o r e e f f ic ien t algo-
r i t h m d i s c o v e r e d by Micali and Vazi rani [MV] r u n s in
0(-4-f in) t ime . The i r a l g o r i t h m u s e s d i s jo in t s e t union;
Micaii and Vazi rani s t a t e w i thou t p roof t h a t t h e " spec ia l
s t r u c t u r e of b l o s s o m s " imp l i e s a l i nea r t i m e b o u n d if a n
a p p r o p r i a t e a - a l g o r i t h m is u s e d [MV p. 21]. However t h e
p roof is c o m p l i c a t e d (over fifty p a g e s long [M]). Using
i n c r e m e n t a l t r e e s e t u n i o n g ives t h e 0(~/-ffm) t i m e b o u n d
d i rec t ly . Bo th m a t c h i n g a l g o r i t h m s u s e 0 (m) space .

Our final e x a m p l e is a d a t a m a n i p u l a t i o n p r o b l e m
t h a t is a t i m e - r e v e r s e d ve r s i on of d i s jo in t s e t union.

(11) The set-splitting problem. Given a n ini t ia l s e t
cons i s t i ng of t h e i n t e g e r s }1, 2 h i , we wish to p r o c e s s ,
on-line, a n i n t e r m i x e d s e q u e n c e of o p e r a t i o n s of t h e fol-
lowing two types :
s p l / t (i) : Split t h e se t c o n t a i n i n g i n t e g e r i in to two

se t s , one con t a in ing all i n t e g e r s l e s s t h a n i ,
t h e o t h e r all i n t e g e r s g r e a t e r t h a n o r eq u a l to
i .

find(i): R e t u r n t he n a m e of t h e s e t c o n t a i n i n g i n t e g e r
i .

In their paper on disjoint set union [HU], Hopcroft and
Ullman describe an 0((m +n) log* n)-time algorithm,
where m is the number of operations and log*n is the
"iterated logarithm," the number of times the logarithm
must be taken to obtain a number less than one . Using a
variant of the static tree algorithm, we can solve this
problem in 0(re+n) time. The method is as follows.

First note that we can solve the set-splitting problem
in 0(i) time per find plus 0(n log n) time for all the splits,
by the "relabel-the-smaller-half" method: With each
integer i we store the name of the set containing it; when
splitting a set, we rename the half containu~ fewer ele-
ments (as in Section 2, and [AHU, pp. 124-129].)

To obtain an 0(re+n) time bound for set splitting we
combine this method with the table look-up method of
Section 2. We partition the set [l..n] into microsets that
are intervals of b -3 consecutive integers. Each microset
has a root in the next microset. The n / b roots are
placed in a universe of macrosets, that is processed by
the relabel-the-smaller-half method. The algorithms for
split and find are similar to those of Section 2. One
change is that the split operations update the macroset
universe (as contrasted with Section 2 ~here finds ~ipdate

the macroset universe). Choosing b =,log(,_-q--~-~_ | gives
i ,+,.+.~ +,-,+ j

250

a l inear algorithm. (Details of a s imilar method for a
different problem can be found in [HT].)

In conclusion we note t h a t there are impor tan t appli-
cat ions of se t merging t ha t our a lgori thm does not handle
(e.g., checking the equivalence of two DFA's IAHU p. 143-
5], comput ing dominators in a flow graph [LTJ and re l a t ed
problems [T1979a]). We have not been able to ex tend our
a lgor i thm to the general problem. Nonetheless the spe-
cial case we t r e a t appears to be significant, bo th in theory

• and applications.

' I E E F E ~ C E S

[AHU1974] A.V. Aho, J.E. Hopcroft, J.D. Ullmar~ The Des/gn
and Analysis o f Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

[AHU1976] A.V. Aho, J.E. HopcroR, J.D. Ullman, "On finding
lowest common ances to r s in t rees ," SIAM J.
Garnp. 5 (1978), pp. 115-132.

[D1976] E.W. Dijkstra, A D~c/p/ /ne of Progr~rnm/ng,
Prentice-Hall, Englewood Ciffs, New Jersey,
1976.

[DR] J. Doyle and R.L. Rivest, "Linear expected t ime
of a simple union-find algori thm," Inf . Proc.
Let ters 5, 1978, pp. 146-148.

[F] G.N. Frederiekson, "Scheduling uni t - t ime tasks
with in teger re lease t imes and deadlines,"
Tech. Rept. CS-8t-27, Dept. of Computer Sci.,
Penn. State Univ., University Park, PA, 1982.

[G1978] H.N. Gabow, "An efficient implementa t ion of
Edmonds' a lgor i thm for max imum matching
on graphs," J. ACM 23 (19761 pp. 221-234.

[G19B1] H.N. Gabow, "A l inear- t ime recogni t ion algo-
r i thm for interval da~s," Inf. Proc. Letters 12
(1961), pp. 20-22.

[G1982] H.N. Gabow, "An almost- l inear a lgor i thm for
two-processor scheduling," J. ACM, 29, 3
(1982), pp. 786-780.

[GR] J .R Gilbert and D.J. Rose, "A separa to r
t heo re m for chordal graphs," Tech. Rept. TR
82-523, Dept. of Comp. Sci., Cornell Univ.,
Ithaca, New York, 1982.

[GT] H.N. Gabow and R.E. Tarjan, "A l inear- t ime
a lgor i thm for a special case of disjoint se t
union," Bell Laboratories Report, July 1982.

[HI D. Harel, "A l inear time algor i thm for the leas t
common ances tors problem," Prec. 21st
Annual Stfn%p. on Found. Cornp. Sci. (1980),
pp. 308-319,

[Hav] B. Havens, "Experiments on an asymptot ical ly
optimum, special purpose se t merging algo-
r i thm," M.S. Thesis, Dept. of Computer Sci.,
Univ. of Colorado, Boulder, CO, 1983.

[HS] E. Horowitz, and S. Sahni, Fundamenta£~ o f
~b~rtputer Algorithms, Computer Science
Press, Potomac, MD, 1978.

[HT1982] D. Harel, R.E. Tarjan, "Fast a lgor i thms for
finding nea re s t common ances tors ," SIAM J.
Comput., submit ted.

[HUI978] J.E. Hopcroft and J.D. Ullman, "Set merging
algorithms," SIAM J. Cor~put. 2, 4, 1973, pp.
294-303.

[KS] D.E. Knuth and A. Schonhage, "The expec ted
l inear i ty of a simple equivalence algori thm,"
Theoretical Camp. Sci. 6 (1978), pp. 281-315.

[LP]

[LE

[~]
[mr]

[~]

[PL]

[s]

[sR]

[T1974]

[T1976]

[T1976]

[T1979a]

[T1979b]

[Th]

[w1962]

W. Lipski, Jr, and F.P. Preparata, "Efficient
algorithms for finding maximum matchir~s in
convex bipartite graphs and related prob-
lems," Acts Inforrnatic= 15 (1981), pp. 329-348.
T. Lengauer and R.E. Tarjan, "A fast algorithm
for Rndin~ dominators in a flowgraph," ACM
Tromp. on Prog. Lav~. and Systems 1, 1, 1979,
pp. 121-141.
S. Micali, pr ivate communicat ion, May 1982.
S. Micali, and V.V. Vazirani. "An O(~/[17[.] E I)
algorithm for finding maximum matching in
general graphs," Proc. 21st Annual Syrup. on
Found. o/Camp. Sci. (19801, pp. 17-27.
C.H. Papadimitriou and M, Yannakakis,
"Scheduling interval-ordered tasks," SIAM J,
Cowtput. 8, 3, 1979, :pp. 405-409.
F.P. Preparata and W. Lipski Jr., 'Three layers
are enough," Proc, g3rd Annual Syrup, on
Foundations of Cornp. Semi., 1982, pp. 350-857.
Also personal communication, F.P. Preparata.
R. Sethi, "Scheduling graphs on two proces-
sors," SIAM J. Comp. 5 (1978 I, pp, 73-82.
R.E. Stearns and D.J. Rosenkrantz, "Table
machine simulation." Proc. l Oth Annual Syrup.
on S~itclti.n 8 and A~tomata Theory, 1969, pp.
118-128.
R.E. Tarjan, "Testing flow graph reducibility,"
J. Cowzp. Sys. Sci 9 (1974), pp. 355-865.
R.E. Tarjan, "Efficiency of a good but not linear
set union algorithm," J. ACM 22 (1975), pp.
215-225,
R.E. Tarjan, "Edge-disjoint spanning trees and
depth-f i rs t search," Acts In forrnat ics 6 (1976 I,
pp. 171-185.
R.E. Tarjan, "Applications of pa th compress ion
on ba lanced t rees ," J. ACM 26, 4 (1979), pp.
890-715.
R.E. Tarjan, "A class of a lgori thms which
require non-l inear tkrne to main ta in disjoint
sets," J. Cornp. Sys. Sci. 18 (1979), pp. 110-
127.
J.E. Thornton, L)es-~n o / a computer- The Con-
trol Data 6600, Scott, Fo re sman and Co., Glen-
view, Illinois, 1970.
R.E. Tarjan, J. van Leeuwen, "Worst-case
analysis of set union algori thms," J. ACM, sub-
mit ted.

251

