A LINEAR-TIME ALGORITHM FOR A SPECIAL CASE
OF DISJOINT SET UNION

by

Harold N. Gabow*
University of Colorado at Bouider
Boulder, Colorado

and

Robert Endre Tarjan
Bell Laboratories
Murray Hill, New Jersey

ABSTRACT

This paper presents a linear-time algorithm for the
special case of the disjoint set union problem in which the
structure of the unions {defined by a "union tree") is
known in advance. The algorithm executes an intermixed
sequence of m union and find operations on n elements in
O(m +n) time and 0(n) space. This is a slight but theoret-
ically significant improvement over the fastest known
algorithm for the general problem, which runs in

~ O(ma(m+n, n)+n) time and O(n) space, where a is a
functional inverse of Ackermann's function. Used as a
subroutine, the algorithm gives similar improvements in
the efficiency of algorithms for solving a number of other
problems, including two-processor scheduling, the oflf-line
roin problem, matching on convex graphs, finding nearest
common ancestors off-line, testing a flow graph for redu-
cibility, and finding two disjoint directed spanning trees.
The algorithm obtains its efficiency by combining a fast
algorithm for the general problem with table look-up on
small sets, and requires a random access machine for its
implementation. The algorithm extends to the case in
which single-node additions to the union tree are allowed.
The extended algorithm is useful in finding maximum car-
dinality matchings on nonbipartite graphs.

*Research partially supported by the Natiocnal Science
Foundation, Grant MCS78-18908.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-099-0/83/004/0246 $00.75

246

1. INTRODUCTION

The disjoint set union problem occurs frequently in
the design of combinatorial algorithms [AHU 1974, pp.
124-145, HS]. We shall formulate this problem as follows,
We wish to carry out an intermixed sequence of three
kinds of operations, which access and modify a collection
of disjoint sets:

makeset (z): Create a new singleton set jz} whose name is
.z. This operation is only allowed if z is in no
existing set.

Sind(z): Return the name of the set containing ele-
ment z.

unite (z,y7): Create a new set that is the union of the sets
containing z and y. The name of the new set
is the name of the old set containing =. This
operation destroys the old sets containing z
andvy.

The operations must be carried out on-line; that is , each
one must be completed before the next one is known. We
shall use n to denote the total number of elements (that
is, the number of makeset operations) and m to denote
the total number of unites and finds.

This problem has many applications and has been
widely investigated (see [T1975]; also [DR}, |KS],
[T1979b]). The fastest known algorithm for the disjoint
set union problem runs in O(ma(m +n, n)+n) time and
O(n) space, where o is a functional inverse of
Ackermann’s function [T1975, TV1982]. There are in fact
a number of such fast algorithms, all minor variants of
each other [TV1982]. We call these algorithms a-—algo-
rithms. The on-algorithms run on a pointer machine
{T1979b] and, as one would expect, perform quite well in
practice.

Nevertheless it is an interesting theoretical problem
to determine whether there is a linear-time algorithm for
disjoint set union. Under certain technical restrictions,
Q(ma(m+n,n)+n) is a lower bound on the worst-case
running time of any set union algorithm on a pointer
machine [T1979b]. Thus to obtain a linear-time algorithm

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800061.808753&domain=pdf&date_stamp=1983-12-01

we must either confine our attention to a special case of
set union or take advantage of the more powerful capabili-
ties of random-access machines [AHU1974, pp. 12-19].
The result of this paper combines both of these ideas. We
give an algorithm that runs in linear time on a random-
access machine for the special case of set union in which
the structure of the unions, as defined by a "union tree”,
is known in advance. This case occurs in many applica-
tions, for each of which our result gives an improved algo-
rithm. Although the results may appear to be of only
theoretic interest, experiments with an implementation of
a restricted case of our algorithm indicate that in prac-
tice it is competitive with a-algorithms and often out-
performs them.

We solve the following problem, called static tree set
union. We are given a {rooted) tree T of n nodes. Ini-
tially every node v of the tree is in a singleton set {v}
named v. We denote the parent of node v in the tree by
p(v); if v is the root of the iree, p(v) has the special
value null. We wish to perform on-line an intermixed
sequence of find and link operations on the sets, where
find is defined as before and link(v) is equivalent to
unite(pfu)v); we allow a link operation on any node v
except the root of the tree. Note that each set existing
during the process induces a subtree of T; the name of
the set is the root of the corresponding subtree.

This version of set union differs from the general
.problem in that the "union tree” 7 is known in advance.
We can use our knowledge of 7 to precompute the
answers to finds on small sets. The resulting algorithm
combines table look-up on small sets with an a-algorithm
run on a universe of size o(n). The algorithm needs
O(m+n) time and O(n) space on a random-access
machine with uniform cost measure and logn ' word
lenglh [AHU1974, pp. 12-19).

We develop our algorithm in Section 2 of the paper.
In Section 3 we sketch an extension of the algorithm to
the case in which the union tree can grow by single-node
additions (incremental tree set union) The extended
"algorithm also runs in 0(m +n) time and 0{n) space. Sec-
tion 4 lists eleven applications.

2. STATIC TREE SET UNION

To solve the static tree set union problem, we parti-
tion the nodes of T into microsets. This partition has
nothing to do with the sets defined by the link operations;
it is computed in a preprocessing step and remains fixed
as the links and finds are executed. The microsets have
three properties:

(a) Every microset contains fewer than d nodes, where b
is a parameter to be chosen later.
(b)

There are 0(n/ &) microsets.
(c)

If S is a microset, there is a node r £ S such that
pv) € SYir]} for every node v € S. Node r is calied
the root of microset S. The set Sir] induces a
subtree of T with root 7; thus S induces a forest con-
sisting of subtrees with a common parent in 7. As a
special case we allow r to be null; in this case S
induces a subtree of T whose root is the root of T.

We shall describe the set union algorithm in a top-
down fashion, concurrently describing the data structures
it uses. We number the microsets consecutively from one.
Within each microset, we number the vertices consecu-
tively from one, according to a preorder for the induced

! Throughout this paper log denotes logarithm to the base two.

247

forest (the microset is a forest by (c)). With each vertex
v, we store micro(v), the number of the microset contain-
ing v, and number (), the preorder number of v within its
microset. Thus the pair micro(u), number(v) uniquely
identifies v. For each microset i we build a table
node (i, *) such that node(%,j) is the node in microset i with
number j. (Note that node is mot a two-dimensional
array, since the range of values of j depends on the value
of i; rather, it is a collection of one-dimensional arrays.)
All the node tables together require a total of n words of
memory since there is one entry per node.

To represent the collection of sets defined by the link
operations, we mark the nodes that are set names. To
store the marks, we use a table mark({i, *) for each
microset %, such that mark(i.j) = 0 if node(i,j) is marked
(i.e., it is a set name), and mark(ij) = 1 otherwise. We
allow the index j to have the range 1<j <b for every
value of i; if j is not the number of a node in microset i,
mark(ij) = 0. For any value of i, mark(i, *) is a vector of
b1 bits. By choosing b < w where w is the word length
of the random-access machine, we can fit each mark table
into a single computer word. We can also treat each mark
table as an integer (whose binary representation is the
sequence of bits in the table) and perform arithmetic on
this integer in 0(1) time.

Our implementation of the link operation is such that
its only effect is to alter the mark tables. Initially
mark(ij) = 0 for all microsets i and all values of 7 in the
range 1<j <b. (Initializing the mark table for a given

microset i requires 0(1) time: we set mark@,*) =0.) We
define link as follows:

1. procedure link(v),
2. mark (micro (v), number(v)) := 1

3. endlink;

Executing tink takes 0(1) time. (To do this we precom-
pute the powers of two, 27, 0'< j <b. Then Step 2 can be
imple;nented by a simple sequence of arithmetic opera-
tions.

The operation find(v) must return the nearest
marked ancestor of wv; that is, the nearest ancestor
node(i,j) of v such that mark(ij) = 0. (We regard a node
as an ancestor of itself.) To carry out find(u) we use a
combination of two methods. To give access within
microsets, we use the following procedure (whose imple-
mentation we describe later):

microfind(v): Return the nearest marked ancestor of »
that is in the same microset as v. If
there is no such node (the nearest
marked ancestor of v is in another
microset), return the root of the

microset containing v.

To give access across microset boundaries, we maintain a
collection of disjoint sets, called macrosets, whose ele-
ments are the roots of the microsets (excluding null). We
manipulate the macrosets by means of the operations
makemacroset, macrofind, and macrounite. We initialize
the macrosets by executing makemacroset(v) for every
microset root v, thus making each such root into a singie-
ton macroset.

There are several ways to implement the operations
on macrosets. One is to use any a-algorithm. This will be
the most desirable choice in Section 3, for the incremen-
tal version of the algorithm. Here it suffices to use a
simpler algorithm, which merely relabels the smaller set
in a union [AHU, pp. 124-128]. The time for m operations

on a universe of size n is O{m + n log n).

We define find as follows. (Our program notation is
essentially Dijkstra's guarded command language [D 1976}
augmented with procedures; we use a vertical bar “|" in
place of Dijkstra’'s box " "

1. function find(v);

2 local z; :

3 x=v;

4 if micro(z) # micro(microfind(z)) -

5. z := macrofind(microfind(z));

B » do micro(z) # micro(microfind(z)) -
7 macrounite(microfind(z), z);
B. z = macrofind(z)

9. od

10. fi;

11. return microfind(x)

12. end find;

Lemma 1. The find algorithm is correct.

Proof. For .any node =z, if micro(z) # micro
(microfind(z)), then microfind(z) is the root of the
microset containing x. It follows by induction that after
Step 5. the node denoted by variable z in the program is
always a microset root, and the macroset operations are
executed only on microset roots. For any value of =z,
microfind(z) is an ancestor of z, and the only possible
marked node on the tree path joining z and microfind(z)
is microfind(z). Another induction shows that after any
step, for any microset root y, macrafind(y) is the nearest
ancestor y' of ¥ such that ¥’ is a microset root and the
operation macrounite(microfind(y’') y'), has not been
performed. Furthermore the only possible marked node
on the tree path joining y and wmacrofind(y) is
macrofind(y). A third induction shows thal, for the nodes
denoted by variables x and v in the program, z is always
an ancestor of v, and the only possible marked node on
the tree path joining v and z is . The correctness of the
algorithm is immediate; termination is guaranteed by the
fact that each successive value of z is a proper ancestor
of the previous value. ®

Lemma 2. If & is Q{logn) and each execution of
microfind requires 0(1) time, then the total time for m
intermixed link and find operations is O(m + n).

Proof. The link operations require a total of O(n) time.
The proof of Lemma 1 implies that just before Step 7 in
find, z and microfind(z) are in different macrosets. Thus
the total number of executions of Step 7, summed over all
the finds, is 0(n/b). It follows that the total time for all
the finds is O(m+n/d) plus the time for the macrounile
and macrofind operations. There are m+0(n/b) of
these, executed on a universe of size 0(n/b). Hence the
time is 0(m+0{(n/b) + 0(n/b)log 0O{n/b)), which is
o(m+n)if b is Q(log n). =

If an a-algorithm is used for the macroset operations
a similar estimate shows the time is linear. Actually an
a-algorithm allows b to assurne values mauch smaller than
Q(log n). For instance in Section 3, b will be Q(log log n)
and the linear time bound stilltholds [T 1975].

Initializing the macrosets requires 0(n/b) time. We
must still describe how to imitialize the microsets and
their data structures and how to carry out microfind. Let
us first consider the latter problem. We need a compact
way to represent the forest (in 7°) induced by a microset.
With each microset i we store its root, denoted by root(i).
The topology of the forest is represented in a table

248

Jorest(i, *), where forest(ij) is the number of children of
node(i,j). Recall that the forest is numbered in preorder.
Hence it is uniquely determined by forest(i, *), and in fact
it can be constructed from forest(i, *) in linear (0(b))
time.

We use ‘the following encoding scheme to represent
forest(i, ®) by a bit vector: An entry forest(ij) =c is
encoded as 10° ?, and these entries are concatenated
together in order of increasing i. The resulting bit vector
has length bess than twice the number of nodes in the
forest, i.e., at most 2b-3 bits. So if we choose b so that
3b -3 < w we can fit each forest table into a single com-
puter word. Hence we can treat a foresi table as an
integer on which we can do arithmetic in 0(1) time. In
particular given such an integer we can construct
Jorest(i, *), and hence the forest itself, in 0(b) time. Con-
versely given the forest we can construct the correspond-
ing bit vector in 0{b) time.

To facilitate microfind eperations we construct a
three-dimensional table answer(f,1a,). The indices f.a
and j range over [0..2%¢73-1] {0.2°7'-1], and [1..b-1],
respectively™ We interpret f as m forest table, a as a
mark table,-and § as a node number. We define answer(f,
a, j) to be k > 0if f is a possible forest table and in the
forest for f. node k& is the nearest ancestor of node 7 with
a(k) = O, amswer(f, a. j) is 0 if f is not a possible forest
table or if it is but no node k exists.

Given the answer table, we can define microfind as
follows:

1. function microfind(v);

2. local 7. 7, k,

3. 1= micro(v); j = number@); k ;=
answer(forest(i, *). mark(i, %), j):

4. relurnif & =0 - rook (i) |

k >0 »mode (i k)
5. end microfind,

Executing microfind takes 0(1) time, as required in the
hypothesis of Lemma 2.

To construct the answer table, we iterate over all

ossible pairs of values f in {0.2?*3-i] and a in
0..2°'—1]. For each pair f,a, we can compute
answer(f.aj) for all j in the range [1.6~1] in O{b) time,
as foltows. We interpret f according to the encoding
scheme for forests. If f does not represent a forest the
entries in answer are 0. Otherwise we construct the
forest for f. We interpret a as a mark table for f. Then
we compute answer(f, a, j) for all j by traversing the
forest in preorder, always remembering the most previ-
ously reached node k with a(k) = 0. Details are left to
the reader.

If we choose b so that b2%~* = 0(n), we can con-
structithe entire answer table in 0{n) time. Note that this
constmuction is part of the initialization and only occurs
once. This choice of b also implies that the answer table
uses 0(n) space.

The last part of the algorithm to be filled in is the ini-
tialization of the microsets and their associated data
structures. We divide the tree T into microssts by
traversing it in postorder. For each node v, we maintain
a count d{v) of its remaining descendants (including
itself) not yet placed in a microset. When placing a node
in a microset, we delete it from the tree. To decide when
to form microsets, we apply the following steps to each
node v in postorder (we assume that the children of each
node are ordered arbitrarily).

5 e
2 0° i3 a vector:of € zeroes,

3 4..k | denotes Lhe set of utegersi suchthat j <1 < k.

Step1. Let d(v) =1 and let w be the first child of v (or
null if there is no such child).

Step2. While d(v) < bti and w # null, replace d(v)
by d(v) + d(w) and w by the next child of v
after w (or null if there is no such child).

Step3. 1t d(v) < b;l' process the next vertex in pos-

torder. Otherwise form a new microset consist-
ing of all descendants of the remaining children
of v up to but not including w. Assign this
microset the next available number, say <.
Define the root of the microset to be v. Number
the vertices © in the microset consecutively
from one in preorder, defining micro(u) and
number(u) for each such w. Build nodefi, *),
mark(i, *), and forest(i,*) (the last two encoded
as bit vectors). Delete all vertices in the
microset from the tree. Let d(v)=1. Go to
Step 2.

After the tree root is processed, we form one last
microset consisting of all the remaining vertices (includ-
ing at least the tree root); the root of this microset is
null.

For the procedure to be correct, we must have b = 2,
Then in Step 2 it is always the case that d{w) < LAE%
Hence in.Step 3 d{v)-< b+1, and every microset formed
contains fewer than b nodes. (The last microset contains

fewer than nodes!) 'Thus the microsets have :pro-

perty (a). (See the tbeginning of this section for the
definition of properties (a), (b), and (c)). Every microset

except the last contains at least ——— nodes. Thus the

2111 + 1, and the
microsets have property (b). Property (c) is obvious by
construction. Constructing a microset takes time propor-
tional to the number of nedes it contains; thus the total
time to construct the microsets is 0(n).

This completes our description of the algorithm. Let
us summarize the constraints on b. We need b > 2 for the
microset construction, b = (iog n) for the time bound of
Lemma 2 to apply, b2* ™ = 0(n) to construct the answer
table in O{n) time and space, and 2b -3 < w, where w is
the word length, to fit each forest table and mark table
into a single word of storage. Assuming w =logn, the

n
logn
the proof of Lemma 2, much smaller values of & suffice
when an a-algorithm is used. Thus we obtain the following
theorem:

total number of micresets is at most

choice b = é—log(is satisfactory. (As noted after

Theorem 1. With an appropriate choice of b, the algo-
rithm for static tree set union runs in O(m +n) time-with
0(n.) preprocessing and uses 0(n) space. ®

A special case that deserves mention is when the
union tree 7 is a path. This case has many applications
{see Section 4) and is somewhat simpler than the gemeral
case. Bach microsel can be taken as a path of b—1 nodes.
(The last microsel can be padded out with dummy nodes.)
This eliminates the need for the forest encoding scheme,
and the answer table becomes two-dimensional instead of
three. In addition the microset initialization is simplified
since there is no need for a depth-first search of 7.

In practice some computers allow the answer tahle to
be eliminated -entirely: When the microset is a path the
answer table serves to locate the first zero bit beyond a
-given bit position in a mark table. Some computers can

249

do this inone ror two machine instructions. For instence
in the CDC Cyber family the floating point Normalize
instruction executes in constent time [Th]. If we reverse

the roles of zero and one in the mark table we can extract
the:answer information from a mark table in constant
time. Hence there is no need for the answer table or the
preprocessing associated with it.

The algorithm for path union trees was implemented
‘in‘the C programming language and run on a VAX 11/780.
(A twodimensional answer table was used.) The algorithm
was:compared to the usual a-algorithm based on weighted
‘union and path compression [T1975]. Data was generated
bath randomly and in ways simulating set union in the
applications of Section 4. The static tree algorithm was
faster in many experiments. For instance on random
data with n ranging from 20Q to 1000, the time for the
static tree algorithm was .6 that of the a-algorithm when
there was one find per unite, and .7 when there were two
Jinds per unite (the common cases). The static tree algo-
rithm required less data space (eg., 1160 words versus
30D0 words for n = 1000). More details are in [Hav]. It is
premature to draw conclusions from this limited experi-
ence, but these results certainly do not rule out the possi-
bility df our algorithm being useful in practice.

3. INCREMENTAL TREE SET UNION

We can extend the algorithm of Section 2 to the case
in which the tree T is allowed to grow a node at a time.
We define the incremental tree set union problem as fol-
lows. Initially T consists of a single node, the root. In
addition to find and link operations, we allow operations
of the following kind:

grow(v,w). Add w to T by making v its parent. This
operation is only allowed if v is a node in T
and w is a new node notin T.

Note tkat the number of grow operations is n —1.

Our algorithm for incremental tree set union is simi-
lar to the algorithm in Section 2, with two main
differences. First the forest encoding scheme for
microsets cannot be used, since a grow operation changes
preorder numbers. Instead we represent the topology of
a microset by a parent table. The parent table can be
stored in one computer word if we choose b so lhat
(b—1)liog b] <. This gives a slight increase in the size of
the .answer table for a given . However choosing b as

(ﬁlg‘;n—n) (or even smaller) and using an a-algorithm
for macrosets allows the linear time bound to be main-
tained.

The second difference is in the construction of
microsets, which change over time. The algorithm for
grow adds a node to a microset. When an addition causes
a microset to have b nodes, it is split into 0(1) microsets.
The splitting operation is similar to the microset con-
struction in Section 2. Details can be found in [GT].

We conclude:

Theorem 2. With an appropriate choice of b, the algo-
rithm for incremental tree set union runs in 0(m +n) time
with O(n) preprocessing (to construct the answer table)
and uses O(n) space. =

4. APPLICATIONS

We conclude by listing eleven applications of our algo-
rithms. (The list is intended to be illustrative, not
inclusive.) For each problem except one, we obtain a
linear-time algorithm (improving the previously best
almost-linear-time algorithm).

The first five applications use static tree set union in
the special case where the union-tree T.is a path of n
nodes.

(1) Twoprocessor scheduling. The input consists of a
collection of unit-time tasks with a partial order. The
object is to schedule the tasks on two processors to
minimize the last completion time. The algorithm of
Gabow [G1982] runs in O(m+n) time, improved from
Ofm+na(n.n)), when implemented using static tree set
union. Here n is the number of tasks and m is the
number of explicit constraints defining the partial order.

(R) p-processor scheduling algorithms. There are two
related applications. The first is computing a schedule
frorn a priority list. The input is a collection of unit-time
tasks with a partial order, a priority list giving a total
order of the tasks, and a number of procéssors p <n.
The object is to schedule the tasks so that the next task
to begin is the first available task in the priority list. The
algorithm of Sethi [S] runs in O(m+n) time, improved
from O(m +na{n,n)), using static tree set union.

The second application is optimum scheduling on an
interval dag. The input is a collection of unit-time tasks
with a partial order that is an interval dag, and a number
of processors p <n. The object is to schedule the tasks
to minimize the last completion time. Papadimitriou and
Yannakakis show that the priority list of an optimum
schedule can be found on O(m+mn) time [PY, G1981].
Using the above algorithm for priority lists, their method
runs in O{m +n) time, improved from 0(m +na(n.n)).

(3) The off-line min problem [AHU1974, pp. 139-141].
The object is to maintain a set of integers in the range
[1..n] under two operations: insert(i), which adds element
i to the set, and eztract min, which deletes and returns
the minimum element. If each integer is inserted only

ponoe and 'the -entire sequence of operations is given off-
line, static tree set union applies to solve this problem in
D(n) time, improved from O{na(n,n)).

{(4) Matching on convez graphs and scheduling with
rdlease .times and deadlines. These two problems are
closély related. /In the first, the object is to find a max-
imum cardinality matching on a convex bipartite graph.
The mlgorithm of Lipskiand Preparata [LP] runs in 0(n)
time, improved ifrom Ofna(n,n)), using static tree set
union. Here:n is:ithe number of vertices.

in the second problem, the input is a collection of
unititime tasks, each having an integer release time and
deadline, and a number of processors p <n. The object
is to schedule each task between its release time and
deadline. Frederickson [F] gives an algorithm that uses
the off-line min problem. Using the algorithm of applica-
tien (3) the run time is 0(n), improved from O(na{n,n)).
(The space'is 0(D+n), where D is the largest deadline.)

{5) VLSI channel routing. The input is a set of n
two-terminal nets. The output is a wire layout on a chan-
nel of least possible width. The algorithm of Preparata
and ILipski [PL1982] runs in 0(n) time, improved from
D{na{n.m)).

The next four applications use static tree set union in
the general case.

8) Nearest common ancestors. Aho, Hopcroft, and
Ullman [AHU1978, T1879a} give an O{m+na(m+n.n))-
time, O(n)-space algorithm to compute the nearest com-
mon ancestors of m pairs of nodes in an n-node tree off-
line. Static tree sel union improves this method to
D(m #n) time. Harel and Tarjan [H, HT1982] have also
given a linear-time algorithm for this problem. Their

250

algorithm is more complicated than the one given here
but extendstto solve the "half-line” problem, in which the
tree is fixed but the nearest common ancestor requests
arrive on-line, in®0(m +n) time.

{7) Fflow graph reducibility. Static tree set union
imprnoves the method of Tarjan [T1974] for testing flow
graph reducibility of an n-vertex, m-edge graph from
D(m a(m,n))to 0(m) time. (Inflow graphsn = 0(m).

(8) Two directed sconning trees, Given a flow graph
the object is to find two directed spanning trees with as
few common edges as :possible. Static tree set union
improves the algorithm of Tarjan [T1976] for this problem
from O(m a(m ,n)) to 0(m) time.

(9) Separators for chordal graphs. Given a chordal
grfﬁl the object is to find a good separator (i.e., one with
Dg m) vertices). Gilbert and Rose [GR] present an
D(n+ma{m m))-time algorithm. With a slight change
their algorithm can use incremental tree set union. The
result is an 0(n +m)-time algorithm.

The next application uses incremental tree set union.

(10) Matching on nonbipartite graphs. The algorithm
of Gabow [G1976] runs in O(nm) time, improved from
O(nm a{m n)), using incremental tree set union. Here n
is the number of vertices and m the number of edges in
the graph; we assume n = 0(m). A more efficient algo-
rithm discovered by Micali and Vazirani [MV] runs in
0(v¥am) time. Their algorithm uses disjoint set union;
Micali and Vazirani state without proof that the "special
structure of blossoms" implies a linear time bound if an
appropriate a-algorithm is used [MV p. 21]. However the
proof is complicated (over fifty pages long [M]). Using
incremental tree set union gives the 0{vnm) time bound
directly. Both matching algorithms use 0(m) space.

Our final example is a data manipulation problem
that is a time-reversed version of disjoint set union.

(11) The set-splitting problem. Given an initial set
consisting of the integers {1, 2, ..., n}, we wish to process,
on-line, an intermixed sequence of operations of the fol-
lowing two types:

split(i): Split the set containing integer i into two
sets, one containing all integers less than i,
the other all integers greater than or equal to
i.

Jind(i):

Return the name of the set containing integer
i

In their paper on disjoint set union [HU], Hopcroft and
Ullman describe an 0{(m+n)log* n)-time algorithm,
where m is the number of operations and log* n is the
“iterated logarithm,"” the number of times the logarithm
must be taken to obtain a number less than one. Using a
variant of the static tree algorithm, we can solve this
problem in 0{m +n) time. The method is as follows.

First note that we can solve the set-splitting problem
in 0(1) time per find plus 0(n log n) time for all the splits,
by the ‘relabel-the-smaller-half* method: With each
integer i we store the name of the set containing it; when
splitting a set, we rename the half containing fewer ele-
ments (as in Section 2, and [AHU, pp. 124-129].)

To obtain an 0{m +n) time bound for set splitting we
combine this method with the table look-up method of
Section 2. We partition the set [1..n] into microsets that
are intervals of b—1 consecutive integers. Each microset
has a root in the next microset. The n/b roots are
placed in a universe of macrosets, that is processed by
the relabel-the-smaller-half method. The algorithms for
split and find are similar to those of Section 2. One
change is that the split operations update the macroset
universe {as contrasted with Section 2 v]here finds Tpdate

the macroset universe). Choosing b = log(r"}—)

gives
ogn

a linear algorithm. (Details of a similar method for a
different problem can be found in [HT].)

In conclusion we note that there are important appli-
cations of set merging that our algorithm does not handle
(e.g.. checking the equivalence of two DFA's fAHU p. 143-
5], computing dominators in a flow graph [LT] and related
problems [T1979a]). We have not been able to extend our
algorithm to the general problem. Nonetheless the spe-
cial case we treat appears to be significant, both in theory

" and applications.

" REFERENCES
{AHU1974] AV. Aho, J.E. Hopcroft, J.D. Ullman, The Dasign
and Anaolysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.
{AHU1976] A.V. Aho, J.E. Hopcroft, J.D. Ullman, "On finding
lowest common ancestors in trees,” SIAM J.
Comp. 5(1978), pp. 115-132,
E.W. Dijkstra, A Discipline of Programming,
Prentice-Hall, Englewood Ciffs, New Jersey,
1978.

J. Doyle and R.L. Rivest, "Linear expected time
of a simple union-find algorithm,” nf. Proc.
Letters 5, 1978, pp. 146-148,

G.N. Frederickson, "Scheduling unit-time tasks
with integer release times and deadlines,”
Tech. Rept. CS-81-27, Dept. of Computer Sci.,
Penn. State Univ., University Park, PA, 1982.

HN. Gabow, "An efficient implementation of
Edmonds' algorithm for maximum matching
on graphs,” J. ACM 23 (1976) pp. 221-234.

HN. Gabow, "A linear-time recognition algo-
rithm for interval dags,” Inf. Proc. Letlers 12
(1981), pp. 20-22.

H.N. Gabow, "An almost-linear algorithm for
two-processor scheduling,” J. ACHM, 29, 3
(1882), pp. 766-780.

J.R. Gilbert and D.J. Rose, "A separator
theorem for chordal graphs,” Tech. Rept. TR
82-623, Dept. of Comp. Sci., Cornell Univ,,
Ithaca, New York, 1982.

H.N. Gabow and R.E. Tarjan, "A linear-time
algorithm for a special case of disjoint set
union,” Bell Laboratories Report, July 1982.

D. Harel, "A linear time algorithm for the least
common ancestors problem,” Proc. 2Ist
Annual Symp. on Found. Comp. Sci. (1980),
pp. 308-319.

B. Havens, "Experiments on an asymptotically
optimum, special purpose set merging algo-
rithm,” M.S. Thesis, Dept. of Computer Sci.,
Univ. of Colorado, Boulder, CO, 1983.

E. Horowitz, and S. Sahni, Fundamentals of
Computer Algorithms, Computer Science
Press, Potomac, MD, 1978.

D. Harel, RE. Tarjan, "Fast algorithms for
finding nearest common ancestors," SIAM J.
Comput., submitted.

J.E. Hopcroft and J.D. Ullman, "Set merging
algorithms,” SIAM J. Comput. 2, 4, 1973, pp.
294-303.

[D1976)

[DR]

{¥]

[G1976]

[G198B1]

[G1982)

(GR]

{ar]

{#]

[Hav]

(H8]

[HT1982]

[HU1973]

[KS] D.E. Knuth and A. Schonhage, "The expected
linearity of a simple equivalence algorithm,"”

Theoretical Comp. Sci. 6 (1978), pp. 281-315.

251

[LP]

(LM

[M]
[Mv]

fryY]

(PL]

{s]
[SR]

[T1974]

[T1875)

[T1976]

[T1979a]

[T1979b)

[Th]

[TV1082]

W. Lipski, Jr. and F.P. Preparata, "Efficient
algorithms for finding maximum matchings in
convex bipartite graphs and related prob-
lems," Acta Informatica 15 (1981), pp. 329-3486.

T. Lengauer and R.E. Tarjan, "A fast algorithm
for finding dominators in a flowgraph,” ACHM
Trans. on Prog. Lang. and Systems 1, 1, 1979,
pp. 121-141.

S. Micali, private communication, May 1982.

S. Micali, and V.V. Vazirani, "An O(VTV] |E|)
algorithm for finding maximum matching in
general graphs,” Proc. 2ist Annual Symp. on
Found. of Comp. Sci. (1980), pp. 17-27.

C.H. Papadimitriou and M. Yannakakis,
"Scheduling interval-ordered tasks,” SJ/AM J.
Comput. 8, 3, 1979, pp. 405-409.

F.P. Preparata and W. Lipski Jr., "Three layers
are enough” Proc. 23rd Annual . on
Foundations of Comp. Sci., 1982, pp. 350-357.
Also personal communication, F.P. Preparata.

R. Sethi, "Scheduling graphs on two proces-
sors,” SIAM J. Comp. 5 (1976), pp. 73-82.

RE. Stearns and D.J. Rosenkrantz, "Table
machine simulation,” Prac. 10th Annual Symp.
on Switching and Automata Theory, 1969, pp.
118-128.

R.E. Tarjan, "Testing flow graph reducibility,”
J. Comp. Sys. Sci 9 (1974), pp. 355-365.

R.E. Tarjan, "Efficiency of a good but not linear
set union algorithm,” J. ACM 22 (1975). pp.
215-225.

R.E. Tarjan, "Edge-disjoint spanning trees and
depth-first search,” Actn informatica 6 (1976),
pp. 171-185.

R.E. Tarjan, "Applications of path compression
ggozoalanced trees,” J. ACM 26, 4 (1979), pp.
715.

RE. Tarjan, "A class of algorithms which
require non-linear time to raintain disjoint
sets,” J. Comp. Sys. Sci. 18 (1979), pp. 110-
127.

J.E. Thornton, Design of a computer: The Con-
trol Data 6600, Scott, Foresman and Co., Glen-
view, Illinois, 1970.

R.E Tarjan, J. van Leeuwen, "Worst-case
analysis of set union algorithms,” J. ACH, sub-
mitted.

