题解:[POI 2015] LAS

洛谷P3584 | DP

Posted by TH911 on July 23, 2025

题目传送门

题意分析

发现, $c_i$ 的限制比较多,因此针对此进行 DP。

设 $\textit{dp}{i,j},j\in\set{1,2,3,4}$ 表示食物 $i$ 的状态为 $j$ 的合法状态是从 $\textit{dp}{i-1,\textit{dp}{i,j}}$ 转移得来。同时,规定 $\textit{dp}{i,j}$ 有值表示合法没有值表示不合法

那么,有:

\[\begin{aligned} \textit{dp}_{i,1}&= \begin{cases} 3&\textit{dp}_{i-1,3}\land c_{i-1}\geq c_i\\ 4&\textit{dp}_{i-1,4}\land c_{i-1}\geq2c_i\\ \end{cases}\\ \textit{dp}_{i,2}&= \begin{cases} 1&\textit{dp}_{i-1,1}\land c_i\geq c_{i-1}\\ 2&\textit{dp}_{i-1,2}\land2c_i\geq c_{i-1}\\ \end{cases}\\ \textit{dp}_{i,3}&= \begin{cases} 3&\textit{dp}_{i-1,3}\land2c_{i-1}\geq c_i\\ 4&\textit{dp}_{i-1,4}\land c_{i-1}\geq c_i\\ \end{cases}\\ \textit{dp}_{i,4}&= \begin{cases} 1&\textit{dp}_{i-1,1}\land c_i\geq2c_{i-1}\\ 2&\textit{dp}_{i-1,2}\land c_i\geq c_{i-1}\\ \end{cases} \end{aligned}\]

但是,发现边界情况不好搞。因为这是一个“环形 DP”,即 $\textit{dp}{n,j}$ 会影响 $\textit{dp}{1,j}$。

对于诸如此类问题,其实直接枚举边界即可。即枚举 $\textit{dp}{1,1}\sim \textit{dp}{1,4}$,之后从 $\textit{dp}{n,j}$ 递推 $\textit{dp}{1,j}$,判断 $\textit{dp}_{1,j}$ 是否有值即可。

AC 代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
//#include<bits/stdc++.h>
#include<algorithm> 
#include<iostream>
#include<cstring>
#include<iomanip>
#include<cstdio>
#include<string>
#include<vector>
#include<cmath>
#include<ctime>
#include<deque>
#include<queue>
#include<stack>
#include<list>
using namespace std;
constexpr const int N=1e6;
int n,c[N+1];
int dp[N+1][4];
void move(int a,int b){
	if(dp[a][2]!=-1&&c[a]>=c[b]){
		dp[b][0]=2;
	}else if(dp[a][3]!=-1&&c[a]>=2ll*c[b]){
		dp[b][0]=3;
	}
	if(dp[a][0]!=-1&&c[b]>=c[a]){
		dp[b][1]=0;
	}else if(dp[a][1]!=-1&&2ll*c[b]>=c[a]){
		dp[b][1]=1;
	}
	
	if(dp[a][2]!=-1&&2ll*c[a]>=c[b]){
		dp[b][2]=2;
	}else if(dp[a][3]!=-1&&c[a]>=c[b]){
		dp[b][2]=3;
	}
	if(dp[a][0]!=-1&&c[b]>=2ll*c[a]){
		dp[b][3]=0;
	}else if(dp[a][1]!=-1&&c[b]>=c[a]){
		dp[b][3]=1;
	}
}
bool solve(int x){
	memset(dp,-1,sizeof(dp));
	dp[1][x]=4;
	for(int i=2;i<=n;i++){
		move(i-1,i);
	}
	move(n,1);
	return dp[1][x]!=4;
}
void print(int x){
	x=dp[1][x];
	static int ans[N+1];
	for(int i=n;i>=1;i--){
		if(x==2||x==3){
			ans[i]=i;
		}
		if(x==1||x==3){
			int p=i-1;
			if(!p){
				p=n;
			}
			ans[p]=i;
		}
		x=dp[i][x]; 
	}
	for(int i=1;i<=n;i++){
		cout<<ans[i]<<' ';
	}
	cout<<'\n';
}
int main(){
	/*freopen("test.in","r",stdin);
	freopen("test.out","w",stdout);*/
	
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>c[i];
		c[i]<<=1;
	}
	if(solve(0)){
		print(0);
	}else if(solve(1)){
		print(1);
	}else if(solve(2)){
		print(2);
	}else if(solve(3)){
		print(3);
	}else{
		cout<<"NIE\n";
	}
	
	cout.flush();
	
	/*fclose(stdin);
	fclose(stdout);*/
	return 0;
}